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unctional Brain Correlates of Social and Nonsocial
rocesses in Autism Spectrum Disorders: An Activation
ikelihood Estimation Meta-Analysis

driana Di Martino, Kathryn Ross, Lucina Q. Uddin, Andrew B. Sklar, F. Xavier Castellanos,
nd Michael P. Milham

ackground: Functional neuroimaging studies of autism spectrum disorders (ASD) have examined social and nonsocial paradigms,
lthough rarely in the same study. Here, we provide an objective, unbiased survey of functional brain abnormalities in ASD, related to both
ocial and nonsocial processing.

ethods: We conducted two separate voxel-wise activation likelihood estimation meta-analyses of 39 functional neuroimaging studies
onsisting of 24 studies examining social processes (e.g., theory of mind, face perception) and 15 studies examining nonsocial processes
e.g., attention control, working memory). Voxel-wise significance threshold was p � .05, corrected by false discovery rate.

esults: Compared with neurotypical control (NC) subjects, ASD showed greater likelihood of hypoactivation in two medial wall regions:
erigenual anterior cingulate cortex (ACC) in social tasks only and dorsal ACC in nonsocial studies. Further, right anterior insula, recently

inked to social cognition, was more likely to be hypoactivated in ASD in the analyses of social studies. In nonsocial studies, group
omparisons showed greater likelihood of activation for the ASD group in the rostral ACC region that is typically suppressed during
ttentionally demanding tasks.

onclusions: Despite substantial heterogeneity of tasks, the rapidly increasing functional imaging literature showed ASD-related patterns
f hypofunction and aberrant activation that depended on the specific cognitive domain, i.e., social versus nonsocial. These results provide
basis for targeted extensions of these findings with younger subjects and a range of paradigms, including analyses of default mode
etwork regulation in ASD.
ey Words: Anterior cingulate cortex, autism, cognitive control,
efault mode network, functional magnetic resonance imaging

fMRI), insula, meta-analysis, pervasive developmental disorders
PDD), positron emission tomography (PET), social cognition

ecent functional neuroimaging studies focused on identi-
fying the neural correlates of autism spectrum disorders
(ASD) have generated several encouraging lines of inves-

igation, albeit with varying degrees of replication. Since impair-
ents in social and communicative skills are the hallmarks of
SD (1–3), most neuroimaging studies have used social cogni-

ion-based paradigms testing the ability to interpret and predict
thers’ beliefs, intentions, and desires (i.e., theory of mind), as
ell as the perception of specific social stimuli such as human

aces. Both processes have been found to be abnormal in early
evelopment of individuals with ASD and have been linked to
he associated social and communicative impairments (3–5).

Based on models of the social brain (6–9), studies have
ocused on a priori regions of interest typically implicated in
entalizing, including medial prefrontal cortex/paracingulate
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cortex, temporoparietal junction, temporal pole, amygdala, and
periamygdaloid cortices. Depending on the specific task em-
ployed, ASD-related abnormalities have been reported for each
of these regions, with moderate degrees of agreement (10–12).
For instance, hypoactivations of rostral anterior medial prefrontal
cortex, adjacent anterior paracingulate cortex, and perigenual
anterior cingulate cortex (ACC) have been found in some studies
using theory of mind paradigms (13–15) but not in others (16).
Likewise, some studies of emotional processing (e.g., 16,17)
describe ASD-related amygdala hypoactivation but not others
(18,19). An area of particular convergence is facial perception,
with ASD-related hypoactivation of fusiform gyrus (FG) observed
across both studies of facial form and facial expression percep-
tion (e.g., 20–23). However, negative reports (18,19,24) have
raised questions regarding the nature and specificity of FG
dysfunction in ASD. In sum, studies of ASD based on social
cognitive models have identified candidate regions of dysfunc-
tion, albeit with only moderate convergence across studies.

Although deviant development of the ability to engage in
appropriate social interactions is the central dysfunction in ASD,
additional cognitive and sensorimotor impairments often co-occur
(e.g., 1,25,26). For instance, working memory, planning, cognitive
flexibility, inhibitory control, and action monitoring are impaired in
both children and adults with autism (e.g., 27–34). Some authors
hypothesize that such abnormalities underlie the pattern of re-
stricted and stereotyped interests that complete the diagnostic triad
of autism, along with social and communicative impairments (1).
These observations have motivated parallel lines of investigation on
the ASD-neuronal correlates of executive dysfunction. Brain corre-
lates of other functions also found impaired in ASD, such as
language, have been also examined (10).

Frontal cortical hypoactivation has emerged as one of the

most consistent results across these studies. Specifically, reduced
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ctivation of dorsolateral prefrontal cortex (DLPFC) and dorsal
CC (dACC) have been described in individuals with ASD
erforming working memory, inhibitory control, visuospatial
ttention, and embedded figure tasks (e.g., 35–39). Hypofunction
f other frontal regions has been reported depending on the
pecific task employed (for reviews, see 10,40). Accompanying
ypoactivation in task-targeted regions, increased function in
reas implicated in more basic sensory processing (e.g., in visual
ortex) has been consistently described (10,12,41). Of note, such
atterns of atypical recruitment have also been reported in
tudies examining social processes (e.g., 20,22).

Despite broadly convergent findings, the neuronal correlates
f ASD remain underspecified. Reasons include the use of
enerally small samples with substantial heterogeneity with
espect to age ranges, clinical presentation, tasks, and statistical
ethods. Most studies used fixed rather than random effects
odels, many lacked direct group comparisons, and most relied
n region-of-interest analyses that limit generalizability and
ncrease type I error rates. Overcoming these limitations defini-
ively will require pooling larger samples and standardization of
ata collection methods across laboratories (42). Pending such a
arge-scale effort, a systematic assessment of current functional
euroimaging findings can inform the field and suggest priorities
or future investigations.

Quantitative meta-analyses have emerged as useful method-
logical approaches to provide unbiased, objective measures of
rain functioning in various clinical populations (43–46), but
one have been conducted in ASD. In contrast to qualitative
yntheses of the current literature (10,11,41,47,48), a quantitative
eta-analysis can lead to the identification of regions that might
therwise be overlooked and is less likely to be driven by
rominent theoretical models.

Here, we provide a voxel-wise quantitative meta-analysis
sing activation likelihood estimation (ALE) (49–51). The ALE
eta-analysis produces voxel-wise formal estimates of probabil-

ties of activation. Using the exact coordinates reported by each
tudy instead of author-assigned anatomical labels, ALE provides
etter spatial resolution and reduces errors due to overly broad
patial designations or region mislabeling (52).

Given that ASD-related abnormalities extend across multiple
ognitive domains, it is important to take into account the impact
f domain specificity. In other words, the ability of meta-analytic
echniques to detect consistent ASD-related abnormalities in a
iven region likely depends on the specific processing domain
xamined. For example, an extensive literature in neurotypical
ubjects supports the hypothesis that studies examining social
ognition would show ASD-related hypoactivation in the peri-
enual ACC (pgACC)/rostral medial prefrontal cortex (3,6,7,9,53–
8). As most studies of nonsocial cognition in ASD included
omponents of executive functions, we anticipated ASD-related
ypoactivation in dorsal ACC/presupplementary motor area
pre-SMA) and lateral prefrontal regions commonly identified in
ormative studies (e.g., 59–65). Fortunately, ALE allows compar-
ng different task domains, even when not directly contrasted in
he same studies. Accordingly, we conducted ALE meta-analyses
f published functional neuroimaging studies of ASD in both
ocial and nonsocial domains.

ethods and Materials

rticle Selection
Using PubMed (http://www.pubmed.org), we searched for
nglish-language, task-based, functional neuroimaging studies of

ww.sobp.org/journal
ASD published between 1990 and January 2008 with the Key-
words “autism;” “fMRI;” “PET;” “neuroimaging;” “PDD-NOS;” and
“Asperger.” Abstracts of initially identified articles were first
reviewed as the basis for selecting papers for full-text review.
References cited in the selected articles were also reviewed. We
included studies where both ASD and neurotypical control (NC)
groups were examined and within-group foci were available in
standardized stereotaxic space (Talairach and Tournoux [66] or
Montreal Neurological Institute [MNI] atlases). To preserve data
interpretability, we included only task-based functional magnetic
resonance imaging (fMRI) and blood flow positron emission
tomography (PET) studies. Likewise, because few papers re-
ported deactivations, only foci of significant activations were
included. When more than one paper was based on the same
sample we selected the first published study. Thirty-nine studies
met inclusion criteria comprising 453 NC subjects and 479
subjects with ASD. Most (79%) studies focused on adults (group
mean age �18 years) and the remaining focused on school-age
children and adolescents (weighted mean ages 28.2 and 27.7
years for adults with ASD and NC subjects, respectively, and 12.7
years for youths in both groups). Of the 39 studies included, 24
tested paradigms related to social cognition such as theory of
mind, face processing, and emotional processing; they were
classified as the social study group. The remaining 15 studies
mostly examined executive functions ranging from spatial atten-
tion, interference control, working memory, and motor control.
They were grouped as nonsocial studies. This distinction pro-
vided a sufficient number of foci within each diagnostic group
per domain to yield reliable ALE results (social: 290 and 220 foci;
nonsocial: 189 and 139 foci; for NC and ASD subjects; respec-
tively). See Figure 1 for study selection flow diagram and Table 1
for study characteristics.

Meta-Analyses
For each study, statistically significant foci of activation from

one contrast were included (Table 1). When more than one
contrast was reported (31% of studies), we selected the broadest
comparison available to better detect common group differences
across studies. Montreal Neurological Institute coordinates were
converted to Talairach space using Brett’s transformation (67).
Meta-analyses were conducted using ALE (51) implemented in
BrainMap (http://brainmap.org/; Research Imaging Center of the
University of Texas Health Science Center, San Antonio, Texas)
(50,52). We first conducted a meta-analysis within each group

Figure 1. Article Selection Flow. Number of studies selected and reasons for
exclusion.
(i.e., NC, ASD). Then, to directly compare the groups, we ran a

http://www.pubmed.org
http://brainmap.org/
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ubtraction meta-analysis. Specifically, for each group, ALE maps
ere generated by modeling each equally weighted activation
eak using a three-dimensional (3-D) Gaussian probability den-
ity function centered at the given coordinates. For any given
oxel, meta-analytic significance resulted from the degree of
patial overlap of independently produced 3-D Gaussian proba-
ility density functions. In agreement with other ALE meta-
nalyses (43–45,50,51,68), we set full-width at half maximum
FWHM) � 10 mm to account for spatial resolution limitations
nd interindividual differences in anatomic variability. Next,
oxel-wise likelihoods of activation for the two ALE maps (ASD,
C) were calculated using permutation testing (5000 permuta-

ions) and corrected for multiple comparisons using false discov-
ry rate (p � .05, corrected), with a cluster extent threshold of
ight voxels. As these foci were generated randomly, no assump-
ion was made as to their spatial location or separation within the
rain. The group subtraction meta-analysis yielded an ALE map
f the regions in which the two groups differed significantly
43,50). The difference ALE maps were then permuted and
tatistically corrected to generate voxel-wise statistical scores.

Task-Domain Analyses. Prior to conducting group analyses,
e verified the presence of significant differences in neural
ctivation for the two processing domains (social, nonsocial) by
onducting a subtraction ALE meta-analysis between social and
onsocial study foci across both groups (NC, ASD) combined.
e then examined ASD-related differences in activation for each

rocessing domain by performing within- and between-group
LE comparisons (i.e., ASD � NC, NC � ASD) for the social and
onsocial domains separately. Given the prominence of studies
xamining face processing, we conducted post hoc analyses on
SD-related differences across the 16 studies employing faces, as
ell as subgroupings of face form perception (e.g., faces vs.

crambled faces; 8 studies) and facial emotional/intentional
xpression (e.g., emotion vs. gender; 9 studies). Finally, to
xamine a more homogeneous group of nonsocial studies, we
onducted a secondary meta-analysis of those papers focusing
n executive functions, thus excluding works on language
rocessing and paced finger tapping (69–72) (Table 1).

esults

ocial Versus Nonsocial Studies: Both Groups Combined
As shown in Supplement 1, direct comparisons between

ocial and nonsocial studies resulted in a broad functional
istinction of the ACC (here defined as anterior cingulate gyrus
roper and paracingulate gyrus [73–76]). Specifically, consistent
ith the hypothesized linkages to mentalizing, person percep-

ion, joint attention, and self-knowledge (e.g., 7), a cluster
entered at the pgACC (Brodmann area [BA] 32) and extending
nteriorly toward the rostral medial prefrontal cortex (MPFC; BA
0) showed greater probability of activation in social studies
ompared with nonsocial studies. In contrast, nonsocial studies
isplayed significantly larger likelihood of activation in a cluster
xtending from dorsal ACC (BA 32) to neighboring pre-SMA (BA
). Other regions typically implicated in different aspects of
ocial cognition, such as the right amygdala, the posterior
ingulate, and a region extending from the right superior tem-
oral gyrus deep to the anterior insula, showed significantly

arger likelihood of activation in the social studies. Bilateral
id-FG was also highlighted, as expected given the high pro-

ortion of face-processing studies.
Social Studies: NC Versus ASD
Between-group comparisons of the individual group ALE

maps for the social studies (see Supplement 2 for within-group
clusters of activation) showed that NC subjects had significantly
higher probability of activation in those clusters consistently
activated in the combined group analysis for social studies. These
included pgACC, right amygdala, and left FG. Accompanying
these areas that are classically involved in social cognition (e.g.,
7,9,56,57) and that have also been implicated in ASD (2,3,77), NC
subjects also showed greater probability of activation in the right
anterior insula (AI), related to the attribution of emotions to
others and oneself (78), and in the posterior cingulate, implicated
in attribution of emotional salience, episodic memory, and
self-referential processing (79–81) (Table 2, Figures 2 and 3). In
contrast, the ASD group displayed greater probability of activa-
tion in somatosensory regions, such as postcentral gyrus, poste-
rior portions of the superior temporal gyrus, inferior occipital
gyrus, and posterior-lateral FG, but not in medial wall areas or in
the sublobar regions specifically related to social processing that
were revealed in the comparison between social and nonsocial
studies (Table 2, Figure 2). Post hoc analyses limited to the 17
face-processing studies revealed ASD-related differences highly
similar to those obtained in the primary social study analysis,
with a notable difference in FG activation. When limited to
face-processing studies, ASD hypoactivation of FG was noted
bilaterally. In the primary meta-analysis including all social
studies, FG hypoactivation in ASD reached significance only in
the left hemisphere with subthreshold right-sided differences.
When face-processing studies were further divided into those
requiring perception of facial forms and those focusing on facial
expressions, ASD-related abnormalities in the medial wall
(pgACC, PCC) were only detectable in the facial expression
studies. Fusiform gyrus hypoactivations in face form processing
studies were limited to the right FG and were located more
posteriorly than the loci resulting from the facial expression
studies (Supplement 3).

Nonsocial Studies: NC Versus ASD
Neurotypical control subjects showed a greater likelihood of

activation in a cluster extending from pre-SMA to dACC, which is
typically implicated in cognitive control (e.g., 82) (Figure 2).
Similar differences with the NC group showing greater likelihood
of activation appeared in DLPFC (BA 9/10) and lateral parietal
cortex such as supramarginal gyrus and inferior parietal lobule
(BA 40). This group subtraction also revealed atypical regional
recruitment in ASD compared with NC subjects. Specifically, in
contrast to the pre-SMA/dACC region that was more likely to be
activated in NC subjects, the ASD group showed a greater
probability of activation in the more posterior supplementary
motor area (SMA) proper, which is typically related to lower-
order motor planning (83). Similarly, meta-analysis of nonsocial
studies revealed a greater likelihood of ASD activation in the
pgACC (BA32), which is typically implicated in social paradigms
(Table 3 and Figure 2). Secondary analyses, limited to nonsocial
studies focusing on executive function, revealed substantially
unchanged ASD-related hypoactivations. By contrast, only hy-
peractivation of rostral ACC in ASD compared with NC subjects
in rostral ACC remained in this more restricted analysis (Supple-
ments 4 and 5).

Discussion

This quantitative meta-analysis revealed ASD-related abnor-

malities (both decreases and increases) in probabilities of acti-

www.sobp.org/journal
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able 1. Characteristics of the Included Studies

Article/Reference Number

Imaging ASD NC

Task Contrast

Number
Foci

Modality n Age M (SD)a n Age M (SD) NC ASD

ocial (24)
Ashwin et al. 2007b (144) fMRI 13 31.2 (9.1) 13 25.6 (5.1) Facial processing Faces vs. scrambled

faces
5 1

Hubl et al. 2003b (145) fMRI 10 27.7 (7.8) 10 25.3 (6.9) Facial processing Faces vs. scrambled
faces

4 4

Schultz et al. 2000b (20) fMRI 14 23.8 (12.4) 14 21.7 (7.2) Facial processing Faces vs. objects 1 1
Bird et al. 2006b (146) fMRI 16 33.3 (12.1) 16 35.3 Facial processing Faces vs. houses 5 5
Deeley et al. 2007b (147) fMRI 9 34 (10) 9 27 (5) Facial processing Neutral faces vs.

fixation
21 25

Kleinhans et al. 2007b (148) fMRI 19 23.5 (7.8) 21 25.1 (7.6) Facial processing
one-back task

Neutral faces vs. houses 1 3

Koshino et al. 2008b (149) fMRI 11 24.5 (10.2) 11 28.7 (10.9) Facial processing
n-back WM

N-back face task vs.
fixation

15 9

Dichter and Belger 2007b

(150)
fMRI 14 22.9 (5.2) 15 23.2 (5.7) Flanker gaze task Congruent vs.

incongruent gaze
8 2

Dapretto et al. 2006c (151) fMRI 10 12.05 (2.5) 10 12.38 (2.2) Imitating facial
expressions

Face imitation vs. rest 36 16

Wang et al. 2004c (152) fMRI 12 12.2 (4.8) 12 11.8 (2.5) Facial emotion
processing

Faces (angry/fearful) vs.
geometric forms

10 11

Hall et al. 2003c (153) PET 8 20–33 8 NA Facial emotion
processing

Emotion vs. gender 6 7

Critchley et al. 2000c (22) fMRI 9 37 (7) 9 27 (7) Facial emotion
processing

Emotional vs. neutral
faces

6 3

Pelphrey et al. 2007c (154) fMRI 8 24.5 (11.5) 8 24.1 (5.6) Facial emotion
processing

Dynamic vs. static
emotional face

6 1

Pelphrey et al. 2005c (155) fMRI 10 23.2 (9.9) 9 23.4 (5.8) Intentional eye gaze
processing

Congruent vs.
incongruent eye
gaze

7 4

Pierce et al. 2004c (156) fMRI 7 27.1 (9.2) 9 (16–40) Facial processing Familiar vs. stranger
faces

9 4

Pinkham et al. 2008c (157) fMRI 10 24.08 (5.71) 12 27.08 (3.99) Trustworthiness face
task

Trustworthy faces vs.
baseline

6 6

Baron-Cohen et al. 1999c (16) fMRI 6 26.3 (2.1) 12 25.5 (2.8) Inferring mental states/
eye

Emotion vs. gender 53 29

Castelli et al. 2002 (158) PET 10 33 (7.6) 10 25 (4.8) Inferring mental states/
animated shapes

Tom animation vs.
random animation

10 10

Happe et al. 1996 (13) PET 5 24 6 38 Story comprehension Tom story vs.
unconnected
sentences

4 4

Gervais et al. 2004 (159) fMRI 5 25.8 (5.9) 8 27.1 (2.9) Voice processing Vocal vs. nonvocal
sounds

6 0

Wang et al. 2006 (160) fMRI 18 11.9 (2.8) 18 11.9 (2.3) Judging sentences
sarcasm

Sarcastic sentences vs.
rest

16 19

Wang et al. 2007 (15) fMRI 18 12.5 (2.9) 18 11.8 (1.9) Cartoon irony/sarcasm
task

Ironic cartoons vs.
nonironic cartoons

35 32

Mason et al. 2008 (161) fMRI 18 26.5 18 27.4 Inference reading
comprehension task

Intentional inference
vs. fixation

13 20

Williams et al. 2006 (162) fMRI 16 15.4 (2.24) 15 15.5 (1.6) Action imitation task Imitation vs. action
execution

7 4

onsocial (15)
Ring et al. 1999 (39) fMRI 6 26.3 (2.1) 12 25.5 (2.8) Embedded figure task Task vs. fixation 10 10
Manjaly et al. 2007 (38) fMRI 12 14.4 (2.7) 12 14.3 (2.7) Embedded figure task Embedded figure task

vs. control task
2 4

Lee et al. 2007 (37) fMRI 12 13.5 (1.6) 12 13.8 (1) Embedded figure task Embedded vs.
matching task

11 3

Just et al. 2007 (131) fMRI 18 27.1 (11.9) 18 24.5 (9.9) Tower of London task Hard vs. easy condition 13 19
Kennedy et al. 2006 (114) fMRI 15 25.5 (9.6) 14 26.1 (8) Stroop task Number vs. rest 8 8
Koshino et al. 2005 (115) fMRI 14 25.7 13 29.8 N-back working

memory task
N-back task vs. fixation 24 24
Schmitz et al. 2006 (163) fMRI 10 38 (8) 12 39 (9) Go/No-Go No-Go vs. Go 11 6

ww.sobp.org/journal
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ation in distributed regions, which appeared largely domain-
pecific. The primary distinction is between studies focusing on
ocial processing versus those examining nonsocial cognition,
ypically pertaining to executive function.

ocial-Related Abnormalities
The findings emerging from the meta-analyses of tasks exam-

ning social functioning (e.g., mentalizing, emotional processing)
ot only revealed hypofunction in regions classically associated
ith social impairments in ASD (i.e., pgACC, anterior rostral
PFC, and amygdala) but also highlighted previously over-

ooked regions. In particular, the right anterior insula, a recent
ocus of attention in the social cognition literature (78,84–88),
howed decreased likelihood of activation in ASD compared
ith NC subjects. Insights into AI function have emerged from

ecent attempts to differentiate the neuronal correlates of men-
alizing (i.e., attribution of others’ beliefs, desires, and intentions)
nd empathizing (i.e., understanding and sharing others’ emo-
ions) (78,87,89). Rather than being used interchangeably and/or
imply being attributed to the MPFC, empathizing has been
elated to AI cortex, while mentalizing has been related to
nterior rostral MPFC and adjacent ACC (7,78,87,89). Consistent
atterns of hypofunction in right AI cortex support an expanded
ocus on AI and on efforts to disentangle the relative contribu-
ions of ventral MPFC/ACC and AI in studies of ASD (90).

Our meta-analysis also revealed ASD hypoactivation in PCC.
utism spectrum disorder related abnormalities in this region
ave been sporadically highlighted (e.g., 91), but its role in the
athophysiology of autism remains underelaborated. Given re-
ent work suggesting broad impairments in self-referential cog-
ition in ASD (92), a possible link between PCC and ASD stems
rom studies implicating the PCC in various aspects of self-
eferential processing (e.g., representing self-mental states) (53,81,93).
his intriguing hypothesis remains provisional as ASD-related
eficits in self-referential cognition have yet to be extensively

able 1. (continued)

rticle/Reference Number

Imaging ASD

Modality n Age M (SD)a n

Haist et al. 2005 (164) fMRI 8 23.4 (11.4) 8
Belmonte and Yurgelun-Todd

2003 (165)
fMRI 6 32.7 (9.8) 6

Schmitz et al. 2008 (116) fMRI 10 37.8 (7) 10

Gomot et al. 2006 (166) fMRI 17 10.37 (1.52) 14

Gaffrey et al. 2007 (72)d fMRI 10 26.1 (10.5) 10

Harris et al. 2006 (71) d fMRI 14 36 (12) 22

Just et al. 2004 (70) d fMRI 17 NA 17

Muller et al. 2001 (167) d fMRI 8 28.4 (8.9) 8

The 39 studies included in the meta-analysis were subdivided into a soci
79 foci were included for the ASD and the NC groups, respectively.

ASD, individuals with autism spectrum disorders; CPT, continuous perfor
eurotypical control subjects; PET, positron emission tomography; Tom, Th

aM age (SD) � mean age of subjects � standard deviation are reported
bGrouped as face form perception study.
cGrouped as facial emotional/intentional expression studies; these two
dThese studies were excluded in the secondary analysis of nonsocial stu
xamined (94). The mirror neuron system (95) has also been
implicated in ASD (96) based on its role in action understanding
(97–99) and awareness of the embodied self (100) and of
self-intentions and self-emotions (93,101,102). We found ASD
hypoactivation in a mirror neuron system area (the right pars
opercularis) but in both social and nonsocial studies. Further
behavioral and neurological investigations are needed to deter-
mine the relevance of the mirror neuron system for ASD symp-
tomatology.

Consistent with the amygdala theory of autism (77), we found
right amygdala hypoactivation. Amygdala dysfunction was ini-
tially linked to ASD due to the region’s proposed role in
evaluating facial expression and representing affective salience
(57) and more recently, by work directly implicating it in the
development of mentalizing (103). However, the nature of amyg-
dala abnormalities in autistic-like behaviors remains unclear. While
our meta-analysis suggests that ASD is characterized by amygdala
hypofunction, a recent fMRI study demonstrated amygdala hyper-
activity in ASD and related it to ASD-related phenomena such as
diminished eye-gaze fixation (18). Similarly, amygdala lesions in
monkeys produced increases in social interaction, not decreases
(104). Such inconsistencies may reflect the functional and structural
complexities of the amygdala or possible differences in specific
paradigms employed for amygdala activation.

Finally, consistent with the neurotypical literature (105), post
hoc analyses suggested that right hemisphere abnormalities in
FG were limited to studies employing face-processing tasks.
Furthermore, they suggest that localization of FG abnormalities
may be sensitive to the specific task employed, with hypoacti-
vation observed for tasks assessing facial expression extending
more ventrally than those examining facial form perception.
However, the direct role of FG hypoactivation in the pathophys-
iology of ASD remains unclear in light of recent findings of lack
of ASD differences in FG after controlling for fixation or time of

Task Contrast

Number
Foci

M (SD) NC ASD

(3.8) Spatial attention task Spatial target vs. null 40 1
(4.4) Visual spatial attention

task
Task vs. fixation 7 4

(6) CPT task with monetary
incentive

Rewarded vs.
nonrewarded stimuli

5 4

(1.47) Auditory change
detection

Novel vs. standard
sound

17 17

(9.8) Semantic category Semantic vs. perceptual
task

14 13

) Single word lexical
semantic processing

Concrete vs. abstract
words

8 4

A Sentence
comprehension

Sentence vs. fixation 8 10

Paced finger tapping Tapping vs. rest 11 12

nonsocial task class based on the paradigm used. Overall, a total of 359 and

e task; fMRI, functional magnetic resonance imaging; NA, not available; NC,
f Mind.

ilable in published article.

groups formed the face processing study group for post hoc analyses.
f executive processes only.
NC

Age

25.6
27.2

38.2

10.87

25.3

31 (9

N

28.5

al and

manc
eory o
if ava
eye gaze or during processing of familiar faces (18,19,24).
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onsocial-Related Abnormalities
The analyses of nonsocial studies revealed ASD-related hypo-

ctivation in regions typically implicated in top-down cognitive
ontrol processes (60,62,63,82,106–108). Such findings agree with
mpirical evidence of executive dysfunction in ASD (28,32,36,109–
11) and support the importance of examining broader cognitive
unctions beyond social cognition in ASD (32,112,113). Given the
entrality of language abnormalities in autism, we examined
hether findings for nonsocial studies depended on verbal para-
igms. Only 6 of the 15 nonsocial studies employed verbal stimuli
70–72,114–116); removing them from the nonsocial meta-analysis
id not change the pattern of results appreciably (data not shown).

typical Activations in ASD
We found ASD-related patterns of hypofunction accompanied

y abnormal recruitment of activity in lower-order processing
ystems. For example, while NC subjects consistently activated
id-FG, commonly associated with face identity (117–120), the
SD group exhibited consistent patterns of activation in the
osterior lateral portion of the FG, typically associated with
hysical aspects of face processing (117,119). Similarly, for

Table 2. Group Comparisons of Regions with Signifi

BA

NC � ASD
Precentral gyrus R & L 6

6
44

Middle frontal gyrus L 9
Inferior frontal gyrus R & L 46

47
47

Anterior cingulate 32
Subcallosal gyrus 34
Cingulate gyrus 24
Inferior parietal lobule /angular gyrus 7
Superior temporal gyrus R & L 22

22
Insula/superior temporal gyrus R 13/38
Posterior cingulate 30
Parahippocampal gyrus amygdala R
Fusifom gyrus (middle) L
Lingual gyrus L
Middle occipital gyrus L 19
Inferior occipital gyrus R 1
Thalamus R

ASD � NC
Precentral gyrus L 9
Postcentral gyrus L 3
Middle temporal gyrus L 22
Superior temporal gyrus R 22
Inferior temporal gyrus R 37

37
Fusiform gyrus (posterior-lateral) L 37
Inferior occipital gyrus L 18

Brain regions labels and their corresponding
weighted center for each cluster showing greater p
using only the social study foci. Anatomical labels ar

ALE, activation likelihood estimates; ASD, autis
neurotypical control subjects; R, right.

aEach cluster was observed with a peak p value

reported.

ww.sobp.org/journal
nonsocial tasks, NC subjects consistently recruited activity in
dACC/pre-SMA regions associated with attentional and motor
control (60,62,63,81,106–108), while the ASD group recruited
activity in the SMA proper, which is linked to more rote aspects
of motor planning (83).

Finally, meta-analyses showed that the failure to activate
dACC/pre-SMA regions during nonsocial tasks in the ASD group
was accompanied by inappropriate recruitment of activity in the
pgACC region activated during social tasks in NC subjects. This
finding is intriguing given recent studies highlighting the default
mode network (DMN) as a novel locus of dysfunction in autism
(121,114). Motivated by reports that DMN deactivation facilitates
performance of attentionally demanding tasks (122–125), failure
to suppress DMN was found in adults with ASD during a Stroop
task and was related to clinical measures of autism severity
(social subscore of the Autism Diagnostic Interview-Revised)
(114). Parallel lines of research have demonstrated ASD-related
compromises in both structural and functional integrity of long-
range connections within the DMN (126–128). Such findings
support the disconnection model of autism (113,129–131), em-
phasizing the potential importance of abnormalities in functional

ly Elevated Likelihood of Activation: Social Studies

me (mm3)

Talairach

x y z ALE (X 10�2)a

128 48 �2 38 1.10
296 �44 �5 37 1.18
248 54 11 8 1.22
168 �44 16 36 1.13
872 49 20 23 1.61
112 40 22 �13 1.03
400 �43 27 1 1.35
600 0 47 6 1.43
176 �24 5 �14 1.19
184 5 4 42 1.24
392 �32 �55 43 1.46
248 51 �10 2 1.05
816 �63 �27 2 2.03
488 47 11 �6 1.54
176 0 �49 18 1.19
712 19 �7 �10 1.68
208 �35 �57 �11 1.21
248 �17 �78 �13 1.30
200 �51 �68 8 1.15
200 23 �88 �9 1.12
448 28 �27 1 1.33

328 �43 6 31 1.21
136 �37 �32 54 1.12
208 �48 �44 9 1.20
616 56 �28 5 1.42
104 45 �64 �8 1.07
240 49 �46 �14 1.25
504 �36 �70 �14 1.17
224 �27 �86 �4 1.16

ann area (BA) and Talairach coordinates of the
ility of activation resulting from group subtraction

ed on the Talairach atlas.
ectrum disorders; BA, Brodmann area; L, left; NC,

corrected; activation likelihood estimates (ALE) are
cant
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nd structural connections between regions rather than focal
bnormalities alone. Future studies should characterize ASD-
elated abnormalities in both DMN integrity and the mechanisms
y which the DMN and related networks (122,125,132) are
egulated.

Compelling Need for a Developmental Perspective
In discussing the neural basis of any childhood-onset disor-

er, an obvious concern is the degree to which group differences
nteract with development. This is especially true for ASD, where
he nature of differences in gray and white matter volumes
hange during early development (133–136). The current func-
ional literature is dominated by studies in adults who are better
ble to minimize movement during scanning and comply with
ask demands, which limited our ability to detect age-related
hanges in the neural correlates of autism. Given the protracted

igure 2. Medial-wall task-based group difference emerging from the sep-
rately conducted group subtractions including social studies only (orange)
nd nonsocial studies only (purple). The top panel shows greater probability
f activation in neurotypical control (NC) subjects compared with autism
pectrum disorders (ASD) in a cluster centered at the perigenual anterior
ingulate cortex (ACC; x � 0, y � 47, z � 6) and posterior cingulate (x � 0,
� �49 , z � 18) for the analysis limited to social studies (light gray; red
range in the color version of the online Journal), while greater activation in
cluster centered at the presupplementary motor area (x � 0, y � 19, z � 46)

esulted from the analysis limited to nonsocial studies (dark gray; blue-violet
n the color version of the online Journal). The bottom panel shows ASD �
C activation likelihood estimate maps in a cluster centered in pgACC (x � 0,
� 40, z � 8) and in the supplementary motor area (x � 0, y � �10, z � 58)
ppearing only in the analysis of nonsocial studies. Images are displayed in
eurological convention (right is right). ACC, anterior cingulate cortex; ASD,
utism spectrum disorders; NC, neurotypical control.
evelopment of the neocortical mentalizing areas BA 10 and
pgACC (137–140), as well as dACC and its related cognitive
functions (141,142), it is likely that the pattern of ASD activation
in the ACC regions emphasized in this study will differ in
pediatric samples. Future investigations will need to both place
greater focus on examining young children with autism and
provide direct comparisons of children and adults to clarify this
issue.

Limitations
The present work has several limitations common to efforts to

synthesize the psychiatric neuroimaging literature (43,143). First,
several studies did not report voxel-wise direct group compari-
sons. While ALE meta-analytic approaches allowed us to com-
pare data provided by group, the paucity of direct between-
group comparisons potentially limited our ability to detect more
subtle group differences. Second, although the number of studies
and the related number of foci included in the present work were
substantial and comparable with other meta-analyses of clinical
populations (43,143), many studies that did not report stereotaxic
coordinates were excluded, also limiting our power to detect
more subtle differences. A priori regions of interest used by
several investigators also limited our ability to discern novel
regional differences. As for any meta-analyses, type II errors due
to publication bias cannot be ruled out. Despite these limitations,
we were able to detect meaningful consistent results, which
future work can confirm through direct experimentation with
sufficiently large samples. Finally, 70% of the studies within each
study class used block designs, which, though efficient, are
potentially susceptible to the development of strategic process-
ing and/or habituation that may differ between groups. Accord-
ingly, event-related designs should be emphasized in future
task-based approaches.

Multiple limitations with respect to ALE should also be noted.
First, the current version of ALE weights all studies equally,
regardless of potential differences in sample sizes. However, NC
and ASD samples were comparable across studies, so that this
simplification did not likely impact the groups differentially.
Second, ALE does not allow covarying potential confounders
such as IQ, which is strongly associated with ASD. Fortunately,
most studies group-matched patient and control groups for IQ,
and mean IQ for NC and ASD groups did not differ across
studies. Finally, to attain a sufficiently large number of foci as

Figure 3. For social studies, neurotypical control (NC) subjects showed
greater likelihood of activation in the right anterior insula when compared
with participants with autism spectrum disorders (x � 47, y � 11, z � �6
light gray; orange in the color version of the online Journal). For nonsocial
studies, NC subjects exhibited greater activation in the middle frontal gyrus
(x � 40; y � 13; z � 27; x � 42; y � 27; z � 26 dark gray; purple in the color
version of the online Journal). Image displayed in neurological convention.

NC, neurotypical control; ASD, autism spectrum disorder.
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ecommended for ALE (�100), we heuristically divided domains
nto those corresponding to social and nonsocial studies. The
onsocial domain in particular could be characterized as arbi-
rary, as it mostly included a heterogeneous set of executive
unctions. Nevertheless, the ability of ALE to demonstrate con-
istent findings that accorded with normative results suggests that
his approach can be effective even in the face of such task
eterogeneity. Future imaging studies of ASD may benefit from
ractionating social and nonsocial domains into their major
ubcomponents.

onclusions
Meta-analyses of the existent ASD neuroimaging literature

rovided evidence of 1) the dependence of ASD-related patterns
f hypofunction on the specific cognitive domains examined
e.g., dACC/pre-SMA for nonsocial, pgACC for social); 2) ASD-
elated abnormalities in regions commonly highlighted in neu-
obiological models (e.g., pgACC/MPFC and amygdala), as well
s regions only beginning to receive attention in relation to ASD
e.g., AI and PCC); 3) inappropriate recruitment of lower-order
rocessing regions (e.g., SMA) in place of higher-order regions
e.g., dACC/pre-SMA); and 4) abnormalities in the default mode
etwork (e.g., rostral ACC and PCC hypoactivation for social
tudies and abnormal activation in rostral ACC for nonsocial
tudies). Despite the limitations of the current neuroimaging
iterature on ASD, the remarkable overall coherence of these
eta-analytical results appears to provide a solid basis for future

Table 3. Group Comparisons of Regions with Signifi
Studies

VolumBA

NC � ASD
Medial frontal gyrus R 6 18
Middle frontal gyrus R & L 9 6

9 1
10 2

Superior parietal lobule R 7 1
Inferior parietal lobule L 40 4
Supramarginal gyrus R 40 1
Claustrum/insula R 13 2
Superior temporal gyrus R 22 2
Lingual gyrus L 17 1
Thalamus L 3

ASD � NC
Medial frontal gyrus 6 3
Inferior frontal gyrus L 9 2
Anterior cingulate 32 2
Superior temporal gyrus L 39 2
Middle occipital gyrus L 18 3
Lingual gyrus L 2
Lateral geniculum body R & L 3

1
Declive R 1

Brain regions labels and their corresponding
weighted center for each cluster showing greater p
using only the nonsocial study foci. Anatomical labe

ALE, activation likelihood estimates; ASD, autis
neurotypical control subjects; R, right.

aEach cluster was observed with a peak p value
reported.
ork with even greater specificity.
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