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Abstract: A construct for metanalytic modeling of the functional organization of the human brain, termed
functional volumes modeling (FVM), is presented and preliminarily tested. FVM uses the published
literature to model brain functional areas as spatial probability distributions. The FVM statistical model
estimates population variance (i.e., among individuals) from the variance observed among group-mean
studies, these being the most prevalent type of study in the functional imaging literature. The FVM
modeling strategy is tested by: (1) constructing an FVM of the mouth region of primary motor cortex using
published, group-mean, functional imaging reports as input, and (2) comparing the confidence bounds
predicted by that FVM with those observed in 10 normal subjects performing overt-speech tasks. The FVM
model correctly predicted the mean location and spatial distribution of per-subject functional responses.
FVM has a wide range of applications, including hypothesis testing for statistical parametric images. Hum.
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INTRODUCTION

Mapping the functional organization of the human
brain is a highly productive, rapidly growing field.
Functional imaging studies are localizing the neural
populations performing specific mental operations in
the domains of perception, action, cognition, and
emotion. A considerable portion of the functional-
imaging literature has been reported as response coor-
dinates (loci*¥?) referenced to the Talairach Atlas
[Talairach and Tournoux, 1988]. Standardized anatomi-
cal referencing makes this literature uniquely well-

Contract grant sponsors: NIMH and NIDA; Contract grant number:
Human Brain Project P20 MH/DA52176.

*Correspondence to: Peter T. Fox, Research Imaging Center, Univer-
sity of Texas Health Science Center, 7703 Floyd Carl Drive, San
Antonio, TX 78240-6240.

Received for publication 9 May 1997; accepted 12 May 1997

© 1997 Wiley-Liss, Inc.

suited for metanalysis. On the other hand, the majority
of studies reporting on Talairach space do so for the
purpose of creating group-mean, statistical parametric
images (SPI[n]), pooling n subjects within the standard-
ized space. Intersubject averaging typically precludes
quantifying intersubject variability in functional
anatomy. Functional volumes modeling (FVM) ad-
dresses the latter shortcoming through exploiting the
former strength. Specificallyy, FVM estimates indi-
vidual (per-subject) variability in the brain locations of
specific mental operations through an analysis of
variability among group-mean studies in the reported
literature, and allows modeling of groups of various
sizes based on this estimate.

THEORY AND STATISTICAL MODEL

FVMs model brain functional areas as bounded
volumes. The bounds of an FVM express confidence
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limits for the spatial distribution of the functional area.
The most general form for expressing confidence
bounds is based on population parameters and relates
to the probabilities for individual samples from the
population. For present purposes, the individual sam-
ple is a single subject. Insofar as the functional imaging
literature reports group-mean studies (SPI[n]), single-
subject probabilities are not reported. They can, how-
ever, be estimated from the variance among some
number of group-mean studies, by means of a statisti-
cal model (i.e., the FVM statistical model). A basic
premise of the FVM construct is that the variance
among group-mean images (SPI[n]) will be less than
that of single-subject images (SPI[1]), with the reduc-
tion in variance being predicted by the central limit
theorem.

An FVM model has two forms: a general and a
specific form. A general-form FVM has six parameters:
three defining the means (p,, 1y, 11,), and three defining
standard deviations (o, oy, 0,) of the population.
These six parameters are derived from the literature
and computed with Equation (1) (means) and Equa-
tion (2) (standard deviations). All six general-form
parameters are expressed as millimeters within the
Talairach space. An FVM is applied using two addi-
tional parameters, which specify the size of the group
to which the FVM will be applied (n) and the confi-
dence limits chosen by the user (m; expressed as the
number of standard deviations).

Model location

An unbiased estimate of the population mean is
calculated using Equation (1),

n n, Ny
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where (Q) is the weighted mean of the centroid coordi-
nates (q) from K experiments. The (q;) represent the
mean X, y, Or Z coordinates as reported in a published
SPI[n]. For the weighted mean, (Q), to estimate the
population mean, the weight factors must be calcu-
lated as (n;/N), where (n) is the number of subjects in a
group and (N) is the total number of subjects in all
groups. Equation (1) is used to estimate py, Hy, and p,
for an FVM by successively substitating (x), (yi) and (z)
for the (q's. Values for (x), {yi, (z), and (n) are generally
reported in tables accompanying each reported SPIL.
Thus, the necessary data are readily available in a
usable format and rely only on the hypotheses of
well-behaved averaging and the comparability of the
coordinates across centers and across modalities.

Model size

An unbiased estimate of population variance is
calculated using Equation (2a),

N o, N-K—

2
T N N T 2
which simplifies to Equation (2b),
0% = o} + 03. (2b)

In Equation (2a), the population variance for coordi-
nate q is aé. This term is calculated using the raw
variance among the K groups in the input data (crfcv)
and the average variance estimated across experiments
o7, The first variance term in Eq. (2b), (a7), is mostly
attributed to interlaboratory sources, while the second
term, (02), is attributed to intralaboratory sources of
variance. Interlaboratory variance is largely method-
ological; intralaboratory variance is largely physiologi-
cal. This distinction is used in model application.

Model application

For specific applications of an FVM model, the
following modification of Equation (2b) is used to
estimate variance for group size n from the estimated
population variance:

2
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Here n is the size of the experimental group to be
modeled. Note that the interlaboratory variance com-
ponent (o7) does not change with group size. The
model is then formulated with a mean location of Q)
(Equation 1) and bounding limits at = m times o4(n)
(Equation 3). Here m is the number of standard
deviations from the mean (i.e., the confidence limits).
There are two general approaches to using this FVM
model. In the first case, when using the model to
evaluate an experiment in a single laboratory, the
variance is calculated for group size n, but the interla-
boratory component (o}) is set equal to zero. In the
second case, when using the model to search the
published literature, the variance is calculated with
group size n = 1 as indicated in Equation (3). We are
assuming that the mean location determined for the
general form of the model with data from many
laboratories is a good estimate of the population mean
and is suitable for the specific form without modifica-
tion.
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METHODS

The FVM construct was tested as follows. First, an
FVM of a single functional area, the mouth area of the
primary motor cortex, was constructed from the pub-
lished literature. Second, the model was used to
predict the spatial distribution of per-subject (SPI[1])
and group-mean (SPI[10]) data. Third, the M1-mouth
region was identified in 10 individual subjects. Fourth,
the assumption of well-behaved image averaging was
tested, using the newly acquired data. Fifth, the spatial
distribution of Ml-mouth loci*¥* observed in the
newly acquired PET data were compared to those
predicted from the model.

MI-mouth model

An FVM model of the mouth region of the primary
motor cortex in the left cerebral hemisphere was
constructed, as follows. Input data from the reported
literature were retrieved using BrainMap™ software
tools and database [Fox and Lancaster, 1995; Lancaster
et al., 1997]. Model-input data were limited to: 1)
group-mean studies, 2) normal subjects, 3) using tasks
including overt speech, 4) reporting an activation
identified as primary motor cortex, and 5) studies not
performed at the Research Imaging Center. Data re-
trieval was initiated by a BrainMap®™ query on behavi-
or:response:speech. The retrieved studies were filtered
for “contrasted” speech, by which is meant that the
task state included overt speech while the control state
did not. This search and filter strategy identified six
SPI[n], ranging in group-size (n) from 8-35, and total-
ing 102 subjects [Petersen et al., 1988; Petrides et al.,
1993; Paus et al., 1993; Andreasen et al., 1995; Bookhei-
mer et al., 1995; Buckner et al., 1995]. From these input
data, the FVM model of the mouth region of the
primary motor cortex in the left cerebral hemisphere
was constructed, using Equations (1) and (3). The
resulting mean and standard deviations for the general
model are given in Table 1. For each axis (x,y, Zz),
confidence bounds were separately computed for the
50th (z = 0.68), 68th (z = 1.0), and 95th (z = 1.6) percen-
tiles. For the volume (all axes), confidence bounds
were computed for the 50th (z = 1.26), 68th (z = 1.55),
and 95th (z = 2.39) percentiles.

MI-mouth mapping

Primary motor cortex for mouth was mapped in 10
right-handed normal men, for the purpose of testing
the above-described FVM model. Mapping was per-
formed with positron-emission tomography (PET)

TABLE |. Comparison of Ml-mouth FVM model and
MI-mouth mapping*

Xmean Xsd Ymean Ysd Zmean Zsd

Model —45 49 -10 50 36 6.4
SPI[1] —46 4.0 -10 6.5 39 48
SPI[10] —47 -10 36

* The model is derived from a metanalysis of published, group-mean
studies. The mapping data are from single-subject analysis of an
overt speech task. All values are in millimeters, referable to Talairach
and Tournoux [1988].

blood-flow imaging, using H, 1O as the blood-flow
tracer. Each volunteer underwent a series of nine PET
scans: three scans per condition in each of three
conditions. The rest condition was visual fixation. Both
task states involved overt reading of visually pre-
sented paragraphs. In one task condition, the subject
heard the paragraph as he read it (Chorus); in the other
task condition no auditory input was provided (Solo).
Group-mean analyses of these data were reported by
Fox et al. [1996].

Using intrasubject averaging, a z-score SPI was
made for each subject, yielding 10 SPI[1]. In addition, a
single SPI[10] was created, averaging all 10 subjects.
Both the SPI[10] and the 10 SPI[1] were created within’
the Talairach space, using SN for spatial normalization
[Lancaster et al., 1995]. Within each of the 10 SPI[1] and
the single SPI[10], the most intense response above a
z-score of 2.0 (P < 0.01) on the lateral brain surface in
the region of the central sulcus was designated as the
putative M1-mouth area. Responses (loci*¥*) were
specified by the Talairach coordinates of the center-of-
mass of the activated area. The loci*¥ for the 10 SPI[1]
were compared to the locus*¥* for the SPI[10] and to
the M1-mouth FVM.

RESULTS

Locix¥ for left M1-mouth were identified in each of
the 10 SPI[1] and in the single SPI[10] (Table I). For
each axis (x,y, z), the mean of the 10, left M1-mouth
loci*y (from the 10 SPI[1]) was within 3 mm (mean 13
mm) of the M1-mouth locus*¥* in the group-mean
image (SPI[10]). This is an initial confirmation that
response locations observed in group-mean images
closely approximate the numeric average of response
locations in individual subjects.

For each axis (x, y, z), the standard deviations of the
10 single-subject M1-mouth loci*¥* were 6.5 mm or
less (mean, 5.0 mm; Table I). Modeled means and
standard deviations (derived solely from group-mean
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TABLE Il. Test of MI-mouth FYM model on 27
coordinates, from 9 normal individuals*

Percent of data

Modeled bounded by model
probability X y z vol
50% 60% 40% 60% 30%
68% 80% 40% 90% 70%
95% 100% 90% 100% 100%

* Percentages indicate the fraction of data accounted for by the
model for each predicted probability bound in x, y, and z and for the
entire volume (vol).

data) were very close to those observed in the single-
subject test data (Table I). Modeled confidence bounds
for the 50th, 69th, and 95th percentiles were also close
to those observed in single-subject test data (Table II).
The spatial distribution of the data is displayed rela-
tive to the 95% x-y confidence bounds in Figure 1.

DISCUSSION

This study demonstrates the feasibility of metana-
lytic modeling of the per-subject spatial distribution of
brain functional areas using response coordinates
(loci*¥) of group-mean statistical parametric images
(SPI[n]) as reported in the brain mapping literature for
input data. The FVM modeling strategy makes several
operational assumptions, which are preliminarily con-
firmed by the present study. Specifically, the FVM
mathematical model assumes that image averaging
(i.e., the creation of SPI[n] for n > 1) is well-behaved
with respect to response locations. By well-behaved,
we mean: 1) that the response location (locus*y#) in an
SPI[n] is effectively identical to the mean of the
individual (SPI[1]) response loci*¥ of n subjects (Table
I); and 2) that the variance among m group-mean
(SPI[n]) response loci*V# is less than the variance
among the individual (SPI[1]) response loci, by a factor
of 1/n, as with the standard error of the mean for
numeric averaging. That image averaging is well-
behaved with respect to response locations was sug-
gested by the data of Fox et al. [1988] and is again
confirmed here. This is not, however, a mathematical
necessity.

Image averaging is necessarily well-behaved with
respect to intensity values, as these are simple numeric
averages [Fox et al., 1988]. However, with respect to
location coordinates (loci*¥?), averaging of images is not
simple numeric averaging. The local maximum in a
multisubject SPI (SPI[n]) is determined by the three-

dimensional (3-D) intensity contour created by averag-
ing the images of n subjects. This intensity contour is a
function of the actual intensity values in each indi-
vidual image and the degree of spatial overlap among
the response loci. Individual images with more intense
activations weight the averaged image more heavily.
Images with responses lying far from the group-
response centroid weight the averaged response locus
little or not at all. Thus, with respect to location coordi-
nates, image averaging creates an intensity-weighted
mode. If the spatial distribution of per-subject loci*y~
is unimodal and if the mode is the mean (as with a
Gaussian distribution), a group-mean locus will closely
approximate the mean of the per-subject loci. If the
spatial distribution is less normal, image averaging
will not be well-behaved with respect to location
coordinates. Thus, the data reported here provide
confirmation that image averaging is well-behaved
with respect to location coordinates and suggest that
the spatial distribution of per-subject loci*V* is Gauss-
ian. If this is the case, the thorny problem of individual
variability may prove far more manageable than previ-
ously supposed.

Functional volumes modeling has a variety of appli-
cations, including interpretation of group-mean and
single-subject SPIs, hypothesis testing for SPIs, auto-
mated labeling of local maxima in SPI, database
queries, neuroscience education, and therapeutic/
diagnostic targeting, as follows. Group mean SPIs
accurately detect mean locations of activation, but
provide no estimate of error about that mean. FVM
derives an estimate of population variance, from which
spatial probabilities can be computed for studies of
any sample size. From this, the likelihood that any
observed locus*¥ falls within the confidence bounds
of a modeled locus*¥* can be determined. Clinical
applications of this concept would include determin-
ing whether an activation in a patient fell outside the
normal spatial-probability distribution, i.e., was evi-
dence of disease-induced functional plasticity.

A recurring criticism of voxel-based (SPI) analyses is
the lack of formal hypothesis testing. FVMs have
potential applications in this domain. The simplest
application would be to use FVMs to specify volumes
within which activations are predicted, based upon
prior task decomposition and literature metanalysis.
Activations within the specified volumes confirm the
hypothesis; activations outside the specified volume
disconfirm the hypothesis. The fraction of the total
activation accounted for by the model can be com-
puted and tested with a chi-square statistic for good-
ness-of-fit of the data to the model. A second appli-
cation [Friston, 1997] is to adjust the probability
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Small View

Figure |.
Spatial distribution of loci*¥#[1] for MI-mouth in 10 normal volunteers. Rectangle in the axial view
illustrates probability FVM model-computed 95% confidence bounds for per-subject data. Plotted in

BrainMap™ [Lancaster et al., 1997].

computation of an SPI to correct only for the number of
resolution elements within the FVM and, thereby, to
increase the regional sensitivity of SPI analysis.

Identifying local maxima as specific functional areas
is time-consuming and subjective. FVM can be used to
automate this task, as follows. A response falling
within an FVM receives the functional label of the
FVM. In fact, the probability that any observed re-
sponse belongs to a described function area can be
described as a probability distribution, with the at-
tached label being that with the greatest probability. As
the library of FVM models grows, the percentage of
observed activations to which a label could be as-
signed would also grow.

Neuroscience-education applications are also readily
conceived. FVM models synthesize large volumes of
data in a manner readily visualized in 2-D and 3-D.
Comprehension of models of functional areas perform-
ing specific mental operations and of neural systems
performing complex tasks is far easier with synthetic,
solid models than using the neuroimaging literature
itself. As FVM models can be created only for repli-
cated observations and explicitly incorporate the num-
ber of studies and subjects establishing each functional
area, the student has a clear gauge of the depth of data
supporting the model. FVMs can also be used to query
the BrainMap™ database, as it supports bounding-box
searches of any dimensions. BrainMap™ can be used to
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retrieve the original input data used to create the FVM,
as reported responses have unique identifiers which
can be saved as a list linked to the FVM model.
Response identifiers, in turn, can retrieve full citational
information, experimental-condition descriptions, im-
aging methods details, other associated responses, and
the like. Thus, the FVM model can serve as a path
leading the student progressively deeper into the
functional-imaging literature.

Diagnostic and therapeutic targeting is an additional
application of FVM. By targeting, we mean aiming a
restricted-field measurement or treatment device, such
as magnetoencephalography (MEG) or transcranial
magnetic stimulation (TMS). The location and confi-
dence bounds for a functional area, expressed by an
FVM, can be projected onto a spatially normalized
MRI. Applying the inverse spatial normalization trans-
formation, the FVM can be projected onto a nonnormal-
ized MRI and, thereby, onto a person’s head. Thus, the
location of functional areas can be identified for physi-
ological measurements, such as MEG, or for transcra-
nial interventions, such as TMS.

In summary, FVM is a method for modeling the
spatial distribution of brain functional areas. Initial
validations of the modeling construct are promising. A
variety of applications can be proposed.
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