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ABSTRACT 

We present a novel strategy for deriving a classification system of functional neuroimaging paradigms 

that relies on hierarchical clustering of experiments archived in the BrainMap database. The goal of our 

proof-of-concept application was to examine the underlying neural architecture of the face perception 

literature from a meta-analytic perspective, as these studies include a wide range of tasks. Task-based 

results exhibiting similar activation patterns were grouped as similar, while tasks activating different 

brain networks were classified as functionally distinct. We identified four sub-classes of face tasks: (1) 

Visuospatial Attention and Visuomotor Coordination to Faces, (2) Perception and Recognition of Faces, 

(3) Social Processing and Episodic Recall of Faces, and (4) Face Naming and Lexical Retrieval. 

Interpretation of these sub-classes supports an extension of a well-known model of face perception to 

include a core system for visual analysis and extended systems for personal information, emotion, and 

salience processing. Overall, these results demonstrate that a large-scale data mining approach can 

inform the evolution of theoretical cognitive models by probing the range of behavioral manipulations 

across experimental tasks. 

 

KEYWORDS: faces, face perception, cognitive paradigms, functional neuroimaging, meta-analysis, 

neuroinformatics 
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INTRODUCTION 

As more resources are being developed and deployed for the management, sharing, and meta-analysis 

of “big data” in neuroimaging, the development of knowledge representation systems has likewise 

accelerated to enable objective and succinct descriptions of these data, including neurotechnological, 

neuroanatomical, and cognitive parameters. However, cognitive data descriptors are relatively under-

developed compared to those from the neurotechnological and neuroanatomical domains. That is, as a 

community we are relatively more confident regarding data annotations differentiating sub-class or type 

of MRI scan (e.g., T2* or EPI images) or brain structure (e.g., hippocampus or amygdala) than in 

differentiating data that relates to memory (e.g., episodic or working). Nevertheless, semantic 

representation of cognitive and perceptual mental processes is a necessary component of large-scale, 

community-wide, and consensus-based mapping of structure-function correspondences in the human 

brain. Such a representation must include the full and robust definitions of mental processes; however, 

the identification and standardization of terms we use to describe the multitude and diversity of 

cognitive and perceptual functions is an inexact science. As a result, many alternative and often 

competitive terminologies exist. With the rise of high profile, high-impact projects such as the Human 

Connectome Project (Van Essen et al., 2013; Toga et al., 2012), the BRAIN Initiative (BRAIN Working 

Group, 2014), the Human Brain Project (Markram, 2012), and the RDoCs framework (Insel et al., 2010), 

the need for knowledge representations of cognitive aspects of neuroscience data has reached a critical 

point. Our community goal of mapping the human brain will surely require definition and 

standardization of the terms that are used to describe human thought and mental processes, as well as 

the behavioral tasks used to elicit them during neuroscience experiments. 

Here, we propose and validate a strategy for deriving a classification system of functional neuroimaging 

paradigms using a proof-of-concept application. Our aim was to develop a meta-analytic data mining 

approach for paradigm classification based on neurobiological evidence provided by functional 

activation patterns, with the intent that such a strategy may mitigate the challenges associated with a 

lack of paradigm-related semantic consensus within a given domain. The overall premise of this work is 

that differences in activation patterns across studies should be captured and leveraged as they indicate 

meaningful segregations in brain function. Under this premise, tasks activating similar brain networks 

should be grouped as functionally similar in a cognitive schema, while tasks demonstrating differential 

activation patterns should be classified as functionally distinct.  
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As an exemplar domain, we demonstrate our approach in the context of face discrimination, as this 

category of neuroimaging tasks is highly heterogeneous and commonly employed across numerous 

perceptual, cognitive, and affective studies in both healthy and diseased populations. These studies 

broadly include visual stimulus presentation of human faces in which participants passively view faces or 

actively discriminate one or more aspects or features of face presentation (e.g., old/new, male/female, 

happy/sad/angry/fearful, etc.). Faces can be used as stimuli for classical conditioning, lip-reading, and 

naming tasks, or to cue autobiographical memory retrieval, emotion induction, or social processing. 

Given the wide scope of face tasks in the literature, our aim was to establish a neuroinformatics 

procedure capable of objectively decomposing the collective group into meaningful sub-categories. 

Using meta-analytic data reported across a diverse range of studies archived in the BrainMap database, 

we sought to determine if multiple functional networks distributed across the brain are differentially 

recruited for various task paradigms. Our ultimate goal was threefold: to develop a paradigm 

classification strategy for use by cognitive ontologies, to examine the underlying neural architecture of 

face perception from a meta-analytic perspective, and, more broadly, to assess whether an evidence-

based data mining approach can inform the evolution of existing cognitive models. 

 

METHODS 

Meta-Analytic Data Extraction and Pre-Processing 

The BrainMap database (Fox and Lancaster, 2002; Laird et al., 2005a; Laird et al., 2011a) currently 

archives brain activation locations from over 11,900 functional magnetic resonance imaging (fMRI) or 

positron emission tomography (PET) experiments (from over 2,400 journal articles). These experiments 

have been manually annotated with metadata that describe the experimental design of each archived 

study. Our study focused on a subset of tasks within BrainMap that were annotated with the paradigm 

class of “Face Monitor or Discrimination”; the relevant experiments were identified and downloaded for 

further analysis using the desktop search engine application, BrainMap Sleuth 

(http://www.brainmap.org/sleuth). Search results were filtered to include only face tasks performed by 

healthy adults to limit any potential bias due to effects of age, disease, or treatment differences. 

Information about the specific behavioral task performed by participants in each experiment, along with 

the experiment name, sample size, and stereotaxic coordinates of activation were exported as a tab-

delimited text file. Exported coordinates reported in MNI space (Evans et al., 1993; Collins et al., 1994) 

were transformed to Talairach space (Talairach and Tournoux, 1988) using the Lancaster transform 
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function icbm2tal (Lancaster et. al., 2007). icbm2tal was developed using global affine transforms to 

accommodate spatial disparity between Talairach and MNI coordinates as compared to the earlier 

mni2tal transform (Brett et al., 2001), and to minimize meta-analytic spatial dissonance due to template 

differences (Laird et al., 2010). Modeled activation (MA) maps were generated by modeling each 

coordinate of activation as a spherical Gaussian distribution of uncertainty to represent the probability 

of activation for each voxel, centered upon the experiment’s activation foci (Figure 1, Step 1). The 

algorithm includes an estimation of the inter-subject and inter-laboratory variability associated with 

each experiment, and is weighted by the number of subjects included in each experiment (Eickhoff et 

al., 2009). The per-experiment MA probability maps were converted into feature vectors of voxel values 

and concatenated horizontally to form an array of size n experiments by p voxels.  

Correlation Matrix Based Hierarchical Clustering Analysis 

After generating the n X p matrix of MA probability maps, we employed a pairwise correlation analysis in 

which correlation coefficients were calculated for each n experiment compared to every other n 

experiment, to assess similarity of spatial topography across MA maps. Hence, the n X p array of MA 

maps was transformed into an n X n correlation matrix that captured the similarity of whole-brain 

modeled activation images across face discrimination experiments (Figure 1, Step 2). Experiments within 

the n X n correlation matrix were subsequently grouped into clusters using hierarchical clustering 

analysis, an agglomerative unsupervised classifier (Figure 1, Step 3). Previous implementation of 

correlation matrix based hierarchical clustering of resting state fMRI data (Liu et al., 2012; Keilholz et al., 

2010) and hierarchical clustering of BrainMap-based meta-analytic images (Laird et al., 2011b) 

demonstrated optimal clustering using the average linkage algorithm and 1 – r as the distance between 

clusters, where r is the Pearson’s correlation coefficient. Following initial testing for optimal 

performance, these parameters were adopted in the present study. Notably, Pearson’s correlation 

distance maximizes the effects of direction, rather than magnitude, of the two observational vectors, 

thus identifying correlated MA maps as being topologically similar and anti-correlated MA maps as 

dissimilar. 

The resultant dendrogram was examined to identify sets of experiments that clustered together. 

Selecting a clustering solution yielding an optimal parcellation of BrainMap experiments relied on two 

measures. The cophenetic distance between clusters at a specific model order (i.e., number of clusters) 

describes the dissimilarity between sub-clusters, and is intrinsically higher at low model orders (e.g., a 

two-cluster solution). Importantly, the relative difference in cophenetic distances when transitioning 
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from model order x to the next highest model order x+1 can be informative when examining if cluster 

separation results in vastly different solutions. Therefore, we sought to determine the extent to which 

increasing model order resulted in substantially different activation patterns respective to each cluster 

by maximizing the relative difference, dc, in cophenetic distances cx and cx+1, as model order, x, 

increased:  

      (Eqn. 1) 

 

Related to the above measure of difference in cophenetic distances is the impact that increasing model 

order has on separating clusters into sub-clusters of proportionate number of variables (e.g., 

experiments). Increasing the cluster solution could potentially yield a segregation of experiments in 

which one sub-cluster dominates with a disproportionately large number of experiments. Therefore, we 

sought to minimize the effect of cluster segregation by calculating the maximum density of experiment 

separation. Essentially, we aimed to determine if increasing model order resulted in a disproportionate 

divergence of experiments. For example, if cluster i0, consisted of n0 experiments at model order x, and 

separated into clusters i1 and i2, with n1 and n2 experiments, respectively, then the density of experiment 

separation, ds is calculated as:  

     (Eqn. 2) 

 

Thus, to achieve an optimal clustering solution of BrainMap experiments, the impact of parcellating 

clusters with increasing model order was assessed by both the relative difference in cophenetic distances 

and the experiment separation density. 

ALE Meta-Analysis of Clustered Experiments 

After selecting an optimal clustering solution, we investigated the underlying spatial features of the 

groups of experiments deemed similar in terms of their convergent activation patterns. Meta-analysis of 

the per-cluster set of experimental MA-maps was performed using the activation likelihood estimation 

(ALE) method (Turkeltaub et al., 2002; Laird et al., 2005b) (Figure 1, Step 4). Similar to the generation of 

the MA maps, ALE models the stereotaxic coordinates for each experiment as spherical Gaussian 

probability distributions. Using BrainMap GingerALE (version 2.3), an extended ALE algorithm was 

implemented that accounts for between-subject variability and between-template variance due to 

differences in spatial normalization methods across publications (Eickhoff et al., 2009), as well as 

eliminates within-experiment effects (Turkeltaub et al., 2012). Voxel-wise ALE scores were computed as 

the union of the probability distributions, which provide a quantitative representation of convergent 
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brain activation patterns; statistical significance was assessed by analytically deriving the null 

distribution of random spatial association between experiments (Eickhoff et al., 2012). ALE maps for 

each cluster of the dendrogram were thresholded at P<0.05 (cluster-level family-wise error rate (FWER) 

corrected for multiple comparisons; cluster-forming threshold P<0.001 at the voxel-level; Woo et al., 

2014). 

Functional Decoding of Paradigm Clusters 

Once the convergent spatial activation patterns were identified for each cluster, we examined the 

experimental design of the contributing tasks to determine which task features (e.g., stimulus, response, 

or instructions) led to the observation of similar activation patterns. That is, for a dendrogram yielding n 

clusters of activation patterns, we evaluated the behavioral tasks utilized in the experiments grouped 

together in cluster #1, the tasks in cluster #2, and so on for all n clusters. To this end, the associated 

metadata of the contributing experiments were analyzed to determine the combinations of stimulus, 

response, and instructions that were most likely to contribute to the observed clustering of activation 

patterns. Forward and reverse inference analyses (Poldrack, 2006; Yarkoni et al., 2011) were performed 

on the distributions of metadata fields for each cluster of experiments to determine over-representation 

compared to the entire BrainMap database (Cieslik et al., 2013; Nickl-Jockschat et al., In Press). Forward 

inference is the probability of observing activity in a brain region given knowledge of the psychological 

process, whereas reverse inference is the likelihood that a given metadata term resulted in an activation 

in the experiments within a cluster. In the forward inference approach, we tested whether the 

conditional probability of activation given a particular label [P(Activation|Task)] was higher than the 

baseline probability of activating the region in question per se [P(Activation)]. Significance was 

established using a binomial test (P < 0.05, corrected for multiple comparisons using Bonferroni’s 

method), which was appropriate since our goal was to compare the observed distribution to the 

expected distribution given only two categories (i.e., frequency of term within a cluster and across the 

entire database). In the reverse inference approach, we identified the most likely metadata term (e.g., 

behavioral domain) given activation in a particular cluster. This likelihood P(Task|Activation) can be 

derived from P(Activation|Task) as well as P(Task) and P(Activation) using Bayes rule. Significance (at P < 

0.05, corrected for multiple comparisons using Bonferroni’s method) was then assessed by means of a 

chi-squared test. Tested metadata fields included the behavioral domain, stimulus type, response type, 

and instructions. In addition, the field of paradigm class was also analyzed; however, it was expected 

that every cluster would return a significant paradigm of “Face Monitor/Discrimination”, given that this 
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was the field chosen for the initial BrainMap query. However, this field was still deemed potentially 

informative since studies can be annotated with multiple paradigm classes, when relevant. 

 

RESULTS 

Search of the BrainMap database for experiments meeting the criteria of paradigm class of “Face 

Monitor/Discrimination” in healthy individuals yielded 379 experiments, which included results reported 

across 2,917 brain locations in 4,945 participants. A complete listing of these experiments, along with 

the corresponding Sleuth workspace file, can be accessed in the Supplementary Materials. MA 

probability maps were generated for each of the 379 experiments, and a spatial correlation analysis was 

performed to compare the topography of each pair of experiments, thereby assessing the similarity of 

whole-brain modeled activation images across face discrimination experiments.  

Correlation Matrix Based Hierarchical Clustering Analysis 

Hierarchical clustering was performed on the 379 x 379 correlation matrix, yielding a complex 

dendrogram. The optimal clustering solution of “Face Monitor or Discrimination” experiments was 

identified by observing the impact of parcellating clusters with increasing model order through both the 

experiment separation density and relative change in cophenetic distances. We aimed to achieve a 

robust solution for characterizing the groupings of experiments in our data; here, we describe results for 

solutions between 3 and 10 clusters. While the metrics pertaining to higher cluster solutions were also 

examined, these fell well short of the optimal solution we aimed to achieve.  

To achieve an clustering solution that optimally parcellated across different groups of experimental 

activation patterns, the relative difference in cophenetic distances and the experiment separation 

density were calculated as a function of increasing model order. Peak values for the relative difference 

in cophenetic distances were observed for solutions of 4, 6, and 8 clusters (Figure 2, blue), indicating 

model orders of activation patterns with substantially different topological characteristics. The second 

cluster criterion examined was the experiment separation density. The goal for this measure was to 

avoid solutions that segregated a single cluster into sub-clusters of disproportionate experiment density. 

Cluster solutions resulting in a decrease in experiment separation density from one model or to the next 

were observed for 4, 6, 7, and 10 clusters (Figure 2, red). Based on convergence of both metrics, 

clustering solutions of 4 and 6 were considered as candidate clustering solutions; these solutions agreed 

with visual inspection of the dendrogram. Ultimately, the 6-cluster solution was identified as the optimal 
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solution due to the substantially larger relative difference in cophenetic distances compared to the 4-

cluster solution.  

Any clusters with less than 19 experiments (<5% of the dataset) were deemed as outlying data and 

excluded from further analysis. The small clusters on the far left and right of the dendrogram fell into 

this criterion (seen in white) with thirteen and two experiments, respectively, and were subsequently 

discarded. The cophenetic distances indicated that these clusters were quite different from the other 

clusters, further providing support for their omission. Four final clusters remained suitable for further 

analyzed: Cluster 1 (blue; 111 experiments), Cluster 2 (pink; 151 experiments), Cluster 3 (green; 68 

experiments), and Cluster 4 (red; 34 experiments) (Figure 3).  

ALE Meta-Analysis of Clustered Experiments 

Coordinates of activation reported across each of the four clusters were separately meta-analyzed using 

the ALE approach (Eickhoff et al., 2012; Turkeltaub et al., 2002) to generate four maps illustrating the 

locations of convergent activations (P > 0.05; cluster-level FWE-corrected for multiple comparisons; 

cluster-forming threshold P < 0.001 at the voxel-level). As shown in Figure 4, the ALE meta-analysis map 

for Cluster 1 included significant areas of convergence in the anterior cingulate cortex, bilateral insula, 

precentral gyrus, premotor cortex and (pre-)supplementary motor area, lateral inferior frontal gyrus, 

dorsolateral prefrontal cortex (DLPFC), putamen, and left superior temporal sulcus. The Cluster 2 map 

indicated significant convergence in the bilateral fusiform gyrus, extrastriate cortex, superior and middle 

temporal cortex, lingual gyrus, amygdala, DLPFC, and cerebellum. Significant convergence was observed 

in Cluster 3 in the ventromedial prefrontal cortex, posterior cingulate cortex and precuneus, and right 

amygdala and corpus striatum. Lastly, Cluster 4 included significant convergence within the bilateral 

middle temporal gyrus and inferotemporal cortex, temporal pole, left superior temporal sulcus, 

parahippocampal gyrus, and inferior and superior frontal gyrus. 

Functional Decoding of Paradigm Clusters 

The clustering results indicated four robust groupings of experiments with similar within-cluster and 

different across-cluster spatial topographies. Forward and reverse inference analyses were performed 

on five different metadata fields of the BrainMap coding scheme: behavioral domain, paradigm class, 

stimulus type, response type, and instructions, to determine which metadata classes within each field 

exhibited an over-representation in each cluster’s experiment set compared to the distribution across 

experiments in the entire BrainMap database. The number of metadata classes within each field varied 

from 18 (response types) to 95 (paradigms), with a total of 258 classes investigated across all fields. 
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Forward and reverse inference analyses indicated 14, 14, 10, and 8 significant classes within Clusters 1, 

2, 3, and 4, respectively. Figure 5 illustrates the significant metadata BrainMap classes for each cluster, 

with pathways that connect one or more clusters indicating specific terms that were significantly 

associated with multiple clusters. For example, the stimulus type of “Faces” and the paradigm class of 

“Face Monitor/Discrimination” were associated with all clusters as predicted, whereas the instruction of 

“Discriminate” related only to Clusters 2 and 4. Notably, all clusters except Cluster 4 indicated significant 

association with several behavioral domain terms associated with emotional and visual processing, as 

shown in the center of Figure 5. Visualization of these metadata results was achieved using Cytoscape 

version 3.1.1 (Shannon et al., 2003).  

The metadata in Figure 5 depict the standardized BrainMap terms that corresponded to each cluster; 

however, the results generated by the forward and reverse inference analyses lacked a sufficient level of 

detail needed to fully understand the subtle variations as to how experimental designs varied across 

clusters. Thus, we manually evaluated each experiment comprising a cluster by reviewing its 

experimental design, with emphasis on identifying key terms distinguishing task types. For example, a 

set of instructions across four different tasks may all be coded in BrainMap with the same instruction of 

“Discriminate”, while manual evaluation clarifies the differential nature of the instructed 

discriminations: (1) “Subjects performed a gender discrimination and indicated whether the presented 

face was male or female”, (2) “Subjects indicated the color presented behind the face”, (3) “Subjects 

determined if the two faces were the same or different”, or (4) “Subjects indicated which face they 

preferred”. For these example tasks, manually extracted terms included “gender”, “color”, 

“same/different”, and “preferred”, respectively. Using these salient terms identified during manual 

evaluation of clusters, we generated a secondary Cytoscape visualization of the complex relations 

between the combinations of task stimulus, response, and instructions and the newly classified brain 

activation patterns (Figure 6).  

The combined knowledge gained from both the BrainMap-based forward and reverse inference analyses 

and the manual inspection and identification of salient terms enabled a clear picture to emerge. Below 

is a summary of the four clusters across face tasks: 

Cluster 1 resulted in convergent activation patterns predominantly localized to the salience network 
(Seeley et al., 2007), including bilateral anterior insula and anterior cingulate cortices. BrainMap 
metadata convergence indicated significance correspondence in the forward and reverse analyses 
within the behavioral domains of “Emotion” and “Cognition.Soma” and the paradigm class of “Film 
Viewing”. Manual review of experimental design trends indicated that this cluster broadly focused on 
tasks that engage integrative processing across action, vision, and cognitive control, including spatial or 
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location discrimination, working memory (e.g., Sternberg or n-back tasks involving face stimuli), or facial 
emotion imitation. Film clips or videos were presented while participants observed and/or performed 
dynamic movements (e.g., chewing, licking, etc.) or lip-reading (cross-represented in Cluster 4). Cluster 1 
also encompassed experiments involving passive viewing of static or dynamic faces in which no 
discrimination was required. Lastly, Cluster 1 included experiments combining visual face presentation 
with auditory stimuli in which participants were required to perform pitch discrimination (e.g., 
discriminate gender of voice). Overall, the cluster consensus indicated that this diverse cluster was 
associated with Visuospatial Attention and Visuomotor Coordination to Faces. 

Cluster 2 resulted in convergent activation patterns in bilateral amygdala, fusiform face area, and other 
occipito-temporal areas. BrainMap metadata convergence indicated significance correspondence in the 
forward and reverse analyses within the behavioral domain of “Perception.Vision.Shape”, and the 
paradigm class of “Classical Conditioning”. Manual review of experimental design trends indicated that 
this cluster broadly focused on tasks involving active visual discrimination of faces, including emotional 
discrimination (e.g., intensity or valence discrimination, emotion matching, the Hariri task (Hariri et al., 
2000), same/different discrimination), face/object discrimination, gender discrimination, memory tasks 
in which stimuli were encoded in a separate scan (unfamiliar vs. familiar, old/new), attending to one 
stimulus among multiple or divided attention, classical conditioning, and visual imagery. Overall, the 
cluster consensus indicated that this network was associated with Perception and Recognition of Faces. 

Cluster 3 was dominated by convergent activation in the default mode network (Raichle et al., 2001; 
Laird et al., 2009), including the medial prefrontal and posterior cingulate cortices. BrainMap metadata 
convergence indicated significance correspondence in the forward and reverse analyses within the 
behavioral domain of “Cognition.Attention” and the paradigm class of “Episodic Recall”. Manual review 
of experimental design trends indicated that this cluster broadly focused on tasks involving emotion 
induction, in which emotional faces were presented to participants with instructions to recall their own 
autobiographical memories associated with the presented emotion. Other tasks included discrimination 
of famous vs. unfamiliar faces, discrimination as to facial attractiveness, pleasant/unpleasant, or other 
subjective qualities, discriminations based on personal relationships (e.g., friends, mothers, children, 
peers, family, beloved), and tasks involving participants predicting an emotional response based on the 
presented facial stimuli. Overall, the cluster consensus indicated that this network was associated with 
Social Processing and Episodic Recall of Faces.  

Cluster 4 resulted in convergent activation patterns in the inferior middle temporal and 
parahippocampus gyri, although the convergence observed in this cluster was neither as robust nor as 
widespread compared to the other clusters. BrainMap metadata convergence indicated significant 
correspondence in the forward and reverse analyses within the behavioral domain of 
“Cognition.Language.Speech” and the paradigm class of “Overt Naming”. Manual review of 
experimental design trends indicated that this cluster was comparatively more narrow in focus, and 
primarily involved naming of faces, semantic memory, face recognition, and lip-reading (the latter being 
cross-represented with Cluster 1). Overall, the cluster consensus indicated that this network was 
associated with Face Naming and Lexical Retrieval.  

 

DISCUSSION 

To address the need for improved semantic representation of cognitive paradigms in neuroimaging 

studies, we developed an evidence-based cognitive neuroinformatics approach using face perception as 
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a proof-of-concept application. Rather than subjectively generate a list of sub-classes to increase the 

existing classification granularity of face tasks, we systematically identified clusters of brain activation 

patterns and summary terms driving the segregation across these clusters. Our study was 

operationalized under the premise that tasks activating similar brain networks should be grouped as 

functionally similar in a given cognitive schema, while tasks demonstrating differential activation 

patterns should be classified as functionally distinct. We identified four sub-classes of face tasks: (1) 

Visuospatial Attention and Visuomotor Coordination to Faces, (2) Perception and Recognition of Faces, 

(3) Social Processing and Episodic Recall of Faces, and (4) Face Naming and Lexical Retrieval. 

Importantly, the methodological objectivity of our approach comes from the task groupings, which were 

derived from the modeled activation patterns and not from the metadata descriptors. Currently, there is 

no formal classification schema for mental tasks in the face perception literature; therefore, the present 

results demonstrating a robust four-part grouping are a new finding within this domain. More broadly, 

this work also demonstrates how data mining techniques can facilitate terminological refinement, 

thereby supporting continued development and expansion of neuroinformatics resources and tools.   

Distributed Networks for Neural Representation of Faces 

When perceiving faces, the standard prediction assumes activation of the fusiform face area (Sergent et 

al., 1992; Haxby et al., 1994; Kanwisher et al., 1997). However, our approach was to move beyond this 

single node to an expanded focus on multiple, distributed functional networks of regions that are 

differentially engaged by face task requirements (Ishai et al., 2005). Observed convergence in Cluster 1 

across dorsal anterior cingulate and orbital frontoinsular cortices suggests a strong role in salience 

processing (Seeley et al., 2007) to detect and evaluate facial stimuli (Menon and Uddin, 2010; De 

Martino et al., 2009) in terms of external relevance to one’s self (Ramasubbu et al., 2011) and 

anticipated outcomes (Nahum et al., 2011), resulting in the mediation of cognitive-affective interactions 

(Luo et al., 2014). Facial processing of salient features includes not only analysis of a presented face, but 

also analysis of the emotional expression, gaze, and visuospatial motion, particularly speech-related lip 

movements (Bruce and Young, 1986). In addition to regions associated with the salience network, 

Cluster 1 included convergence in sensorimotor and premotor areas, driven by tasks associated with 

facial imitation and movement execution; lateral prefrontal cortex, explained by an association with 

cognitively demanding tasks (e.g., facial n-back task; Bzdok et al., 2012; Luo et al., 2014); and the 

superior temporal sulcus, which has been linked to assessment of gaze (Hoffman and Haxby, 2000; 

Grosbras et al., 2005), perceiving speech and non-speech mouth movements (Calvert et al., 1997; Puce 
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et al., 1998; Rolls, 2007), and voice discrimination (Belin et al., 2000; Shah et al., 2001). Overall, Cluster 1 

presented as the most heterogeneous grouping of tasks and appeared to represent a conflation across 

attention (Fox et al., 2005) and visuomotor responses to faces. We interpret the latter as extending 

somewhat beyond the neural substrates of face perception per se to involve task demands in which the 

visual face stimulus is a cue to execute a task requiring a visuomotor  (e.g., lip-reading) or cognitive 

response (e.g., n-back). 

In contrast to Cluster 1, Clusters 2, 3, and 4 all presented as moderately homogeneous experimental 

groupings. Cluster 2 corresponded to the canonical face perception network, most notably including 

activation of the bilateral fusiform face area in the lateral fusiform gyrus (Sergent et al., 1992; Haxby et 

al., 1994; 1999; Clark et al., 1996; Kanwisher et al., 1997; McCarthy et al., 1997; Halgren et al., 1999; 

Ishai et al., 1999; Hoffman and Haxby, 2000). Cluster 2 was associated with visual analysis of faces, and 

included known face-responsive regions in visual extrastriate cortex (beyond the fusiform face area) in 

the lateral inferior occipital gyri and the superior temporal sulcus (Halgren et al., 1999; Haxby et al., 

1999; Hoffman and Haxby, 2000; Kanwisher et al., 1997; Puce et al., 1998). Cluster 3 strongly 

corresponded to tasks involving biographical episodic memory retrieval and social processing, giving rise 

to recruitment of the default mode network, including medial prefrontal, precuneus, posterior cingulate 

cortex, and amygdala (Spreng et al., 2009; Martinelli et al., 2013; Bzdok et al., 2012). Notably, it has 

previously been shown in a large-scale meta-analysis that regions of the default mode network exhibit 

increased activation in the context of certain cognitive tasks, such as those involved during social 

cognition or autobiographical memory (Laird et al., 2009). The distributed network revealed by this 

cluster has been associated with recognition of familiar faces, specifically famous faces (Leveroni et al., 

2000; Gorno Tempini et al, 1998), faces personally known to the participants (Shah et al., 2001), and 

faces of one’s own children (Ramasubbu et al., 2007). Cluster 3 was also complemented by the striatum, 

which is known to play a role during social evaluation and decision-making (Kampe et al., 2001; Simon et 

al., 2014), particularly for valuation-based decisions (Ho et al., 2012). Cluster 4 included the least 

heterogeneous grouping and was primarily dominated by experiments involving face naming. 

Recollection of semantic knowledge of famous faces is known to recruit middle temporal cortex, 

especially the anterior middle temporal gyrus (Gorno Tempini et al., 1998; Brambati et al., 2010). Cluster 

4 demonstrated correspondence to lexical knowledge and retrieval, relying on temporal pole, 

inferotemporal cortex, and middle temporal gyrus (Damasio et al., 1996; Price et al., 2005). 
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Although the clustering analysis was designed to identify dissociable co-activation patterns, we observed 

several nodes that were common across clusters. Clusters 2 and 3 revealed common recruitment of the 

temporoparietal junction, strengthening support for its role linking competing networks for external and 

internal information processing (Bzdok et al., 2013; Krall et al., In Press). Clusters 1 and 4 revealed 

convergence in Broca’s area, likely due to common recruitment across lip reading (Paulesu et al., 2003) 

and lexical retrieval (Damasio et al., 1996). Clusters 1 and 2 both recruited the DLPFC, which aligns with 

evidence indicating its involvement with perceptual decision-making (Druzgal and D’Esposito, 2001; 

Heekeren et al., 2006; Cieslik et al., 2013). Clusters 1 and 3 demonstrated overlap in the left posterior 

insula (Menon and Uddin, 2010). The anterior and posterior insula are known to have different 

functional and connectional profiles (Taylor et al., 2009; Kurth et al., 2010; Deen et al., 2011; Cauda et 

al., 2011; 2012); current evidence suggests that the anterior and posterior insula may be recruited 

during salience processing, whereas the posterior insula and posterior cingulate/precuneus during 

default mode processing. Thus, the present results suggest that the autonomic arousal role of the 

posterior insula (Craig, 2002; 2009; Taylor et al., 2009) may involve evaluation of environmental 

awareness during both salience processing and default mode processing. Lastly, the amygdala was 

common to Clusters 1, 2, and 3, and the high convergence of this region across face tasks suggests 

involvement in processing above and beyond emotional expressions (Breiter et al., 1996; Morris et al., 

1996; Phillips et al., 1998; Hariri et al., 2000; Bzdok et al., 2011; Shi et al., 2013). Although the superior 

temporal sulcus was observed across multiple clusters, no topological overlap was observed. Notably, 

no region was observed across all four clusters.  

An Integrated Model of Face Perception 

A human’s ability to perceive, recognize, and respond appropriately to faces requires a highly developed 

range of complex perceptual, cognitive, and emotional processes (Bruce and Young, 1986; Burton et al., 

1990), necessitating recruitment across a widely distributed neural network. A previous ALE meta-

analysis of explicit and implicit emotional processing of faces identified convergence in visual, limbic, 

temporoparietal, prefrontal, and subcortical areas, independent of emotional valence (Fusar-Poli et al., 

2009). Their face processing network demonstrated strong correspondence to the collective networks 

observed in the present study, but did not differentiate between varying processing components 

supporting face perception. In contrast, the hierarchical classification scheme proposed here bears 

strong similarities to the model of distributed neural systems first proposed by Haxby et al. (2002) and 

updated by Gobbini and Haxby (2007). This face perception model includes a core system for the visual 
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analysis of faces in the inferior occipital gyrus, lateral fusiform gyrus, and posterior superior temporal 

sulcus. Also included is an extended system for personal knowledge of faces (i.e., representation of 

one’s relationship with the presented person, biographical information, and theory of mind processing) 

in the medial prefrontal, anterior temporal, and posterior cingulate cortices and temporoparietal 

junction, as well as for emotional response to faces in the amygdala, insula, and striatum. A recent study 

examined hierarchical clustering of functional connectivity patterns during execution of a face 

perception task. The identified nodes in their network-level analyses closely matched the brain regions 

derived from the present BrainMap data, as did the network structure, which differentiated between 

the temporo-occipital, medial fronto-parietal, and lateral fronto-parietal sub-networks (Zhen et al., 

2013). This correspondence is notable, given that their proposed model of systems for facial 

identification, semantic retrieval, and expression analysis was limited to perception of novel faces with 

neutral expressions.  

With respect to an integrated model of face perception, our results support the neural framework of a 

core plus extended systems. Here, Cluster 2 represents the core system for visual analysis of faces, while 

Cluster 3 corresponds to the extended system for personal knowledge, with Cluster 4 representing 

related lexical retrieval of face names. However, although affective processing is clearly a major 

component of the face perception model, a separate extended system for emotion was not observed in 

the present study. Rather, neural substrates underlying emotional responses were found to extend 

across multiple clusters. Clusters 1, 2, and 3 included varying convergence of activation in the amygdala, 

insula, and other limbic areas relevant to analysis of the emotional content of faces (Ishai et al., 2005; 

Gobbini and Haxby, 2007; Schulz et al., 2009; Bzdok et al., 2012). This result is not surprising given that 

many of the tasks involved visual presentation of emotional faces, and indeed, the Cytoscape 

representations of BrainMap fixed text terms (Figure 5) demonstrated correspondence between 

emotional terms and the first three clusters. Thus, we attribute the lack of an observed separate system 

for emotional responses to both the unique nature of our meta-analytic approach and the resultant 

coupling of emotional face presentation across numerous tasks. Moreover, while some research has 

focused on isolating regionally specific emotional states (e.g., sadness, happiness, anger; Fusar-Poli et 

al., 2009), we observed no major trends across clusters driven by different emotions, although we 

cannot rule out subtle emotion-dependent modulations of activation (Breiter et al., 1996) or 

deactivation (Sreenivas et al., 2012) since by nature coordinate-based meta-analysis results do not 

permit detailed analysis of the BOLD time series.  
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Beyond these original components of the Gobbini and Haxby model (Gobbini and Haxby, 2007), our 

results suggest an additional extended system related to attentional processing to determine the 

salience of presented faces, as indicated by Cluster 1. Overall, we propose an amendment of the Gobbini 

and Haxby (2007) model of face perception that includes a core visual system, and three extended 

systems for personal knowledge, emotion, and salience. Critically, we note that core and extended 

systems rely on the principle of functional integration in that no system operates independently but 

instead demonstrates varying degrees of relative recruitment strength based on changing task demands. 

What we have shown is that different systems in the collective network demonstrate functional 

specialization, with each performing a distinct aspect of processing and responding to face stimuli. We 

conclude that any given task implemented in the scanner, with its unique combination of stimulus, 

response, and instructions, may preferentially recruit across these networks, depending on whether 

processes associated with visual analysis, salience, personal knowledge, or emotion are actively 

engaged.  

Methodological Issues and Limitations 

There are several factors that potentially limit the results of the current study. With respect to the 

clustering method, a range of parameters exist that must be selected prior to analysis during any 

exploratory data mining approach (Pedrycz, 2005), which can somewhat limit any resultant conclusion. 

Hierarchical clustering involves selection of both a distance measure and a linkage algorithm; our results 

relied on clustering using the Pearson’s correlation as the distance measure and the average linkage 

algorithm. During our preliminary analysis, we evaluated several other distances (e.g., Spearman’s 

correlation, Hamming, Jaccard, Euclidean, Manhattan) and linkages (e.g., average, complete, single, and 

weighted) for comparative purposes. Across these, we determined that the Pearson’s and Spearman’s 

correlations provided reasonable distances and found precedence for their use (Laird et al., 2011b; Liu 

et al., 2012; Keilholz et al., 2010). In the case of the Spearman’s correlation, a ranked-value approach is 

used to calculate correlation coefficients and inherently provides more weight to those voxels shared 

between modeled activation images. Conversely, the Pearson’s approach maximizes the difference 

between spatial patterns in modeled activation images. While the results across these two distance 

metrics were largely similar, the Spearman’s correlation resulted in two additional clusters (subsets of 

Clusters 1 and 3). These additional sub-clusters did not yield dissimilar activation patterns from their 

parent networks, but rather included many of the same topological features. Furthermore, evaluation of 

the significant metadata indicated that many of the significant metadata terms were shared. Together, 
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this suggests that no valuable information was gained by choosing the Spearman’s correlation over the 

Pearson’s correlation; thus, the Pearson’s approach was selected. Similarly, results utilizing different 

linkage algorithms were examined. The single and complete linkages yielded strongly cascading 

dendrograms, with little informational value. The average linkage was ultimately selected because of its 

high cophenetic correlation coefficient (high degree of similarity between cophenetic and pairwise 

distances) and corresponding clustering structure relative to the other three methods. 

Selection of a clustering solution is another analytic stage requiring optimal parameterization and in 

some cases necessitates utilization of multiple information criteria (Kelly et al., 2010; Chang et al., 2012; 

Clos et al., 2013). Here, our ultimate goal was to identify a subset of classes for taxonomic and 

ontological purposes. Thus, we were predisposed towards simple solutions yielding 3-6 clusters, as 

opposed to solutions yielding more than 10 clusters, as this would have been a considerable number 

from a semantic representation perspective. Thus, our approach in using experimental separation 

density and cophenetic distances was more simplistic than what has been implemented in prior studies, 

but yielded robust results of the dimension we intended to target. However, we note that further 

decomposition into an ensuing level of classification is possible by additional investigation of the 

dendrogram structure to yield increased granularity and precision when defining cognitive paradigms.  

Ontological Expansion 

This study was motivated by a need for new strategies for developing a paradigm classification schema. 

Although ontological development is often characterized as a somewhat esoteric branch of biomedical 

research, the fundamental rationale behind this field is to develop improved methods for how scientific 

work is reported, discussed, and mined. In their seminal work, Bruce and Young (1986) stated their goal 

was to develop “a set of terms for understanding and discussing for how we recognize familiar faces, 

and the relationship between recognition and other aspects of face processing”. Here, our goal was to 

advance this ontological emphasis a step further and enhance the formal schema delineating variations 

of face processing tasks. The Cognitive Paradigm Ontology (CogPO) is a domain ontology of cognitive 

paradigms utilized in functional neuroimaging experiments (Turner and Laird, 2012). CogPO was 

originally developed using paradigm terms from the BrainMap taxonomy, but has since been expanded 

to include other paradigms, such as those also represented by the Cognitive Atlas (Poldrack et al., 2011). 

Although CogPO terms have been useful in providing functional interpretation of intrinsic connectivity 

networks (Laird et al., 2011b) and in automated multi-label annotation and classification of 

neuroimaging experiments (Turner et al., 2013), some of the included paradigm classes are fairly coarse 
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and require decomposition into sub-classes. We observed that functional interpretation of the clusters 

in the present study was limited when utilizing existing BrainMap terms already represented in CogPO. 

To obtain a higher degree of clarity, manual review of experiments allowed the derivation of more 

salient terms and enhanced our overall results. Importantly, we note that the results presented here 

add depth and granularity to the CogPO ontology, as well as to the BrainMap taxonomy. However, this 

approach represents a semi-automated, not fully automated approach. While hierarchical clustering 

provided an objective and efficient means to aggregate experimental results into distinct groups, 

manual review required a moderate amount of labor. Future work will involve evaluation of text mining 

algorithms to develop a more automated approach for identifying and extracting key terms to enable 

functional decoding of experimental groupings.  

Conclusions  

We investigated the feasibility of an objective and evidence-based approach for identification of 

paradigm sub-classes used across the functional neuroimaging literature in the domain of face 

perception. The aim of our study was to highlight the variability in tasks and classify them into distinct 

groupings based on modeled activation patterns rather than task descriptions. We concluded four sub-

classes of face tasks: (1) Visuospatial Attention and Visuomotor Coordination to Faces, (2) Perception 

and Recognition of Faces, (3) Social Processing and Episodic Recall of Faces, and (4) Face Naming and 

Lexical Retrieval. Interpretation of these results supports an amendment of the distributed model of 

face perception proposed by Gobbini and Haxby (2007) to include a core system for visual analysis and 

extended systems for personal information, emotion, and salience processing. More broadly, our results 

demonstrate that large-scale meta-analysis of the BrainMap database allows theoretical mental models 

to be tested by probing the range of behavioral manipulations across tasks. In this way, neuroimaging 

meta-analysis and data mining are able to establish a link between theory and experimentalism to a 

degree that is more powerful than what can be accomplished with results achieved in a single empirical 

study. Our results demonstrate that the range of tasks involving presentation of human faces is 

complex, and the underlying neural architecture that collectively supports the execution of these tasks is 

similarly broad and diverse. 
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FIGURE CAPTIONS 
 
Figure 1. Data Analysis Pipeline. Step 1: Per-experiment coordinate-based data were extracted from 

BrainMap and used to generate modeled activation (MA) maps. Step 2: A pairwise correlation analysis 

was performed in which correlation coefficients were calculated for each n experiment compared to 

every other n experiment. Step 3: Experiments were grouped into clusters using hierarchical clustering 

analysis. Step 4: Meta-analysis of the per-cluster set of experimental MA-maps was performed using the 

activation likelihood estimation (ALE) method. 

 

Figure 2. Cluster Criteria. The difference in cophenetic distances (blue) and density of experiment 

separation (red) are plotted as a function of candidate model orders. Peaks in the difference in 

cophenetic distances indicate that the corresponding clustering solution results in clusters with 

substantially different activation patterns than the model order below it. Decreases in density of 

experiment separation indicate a given solution yields clusters of non-trivial size, providing robustly 

different activation patterns.  Convergence across both metrics was observed for a solution of 6 clusters. 

 

Figure 3. Hierarchical Clustering of MA Maps. Results of the hierarchical clustering analysis of face 

studies yielded a 4-cluster solution, as depicted via a dendrogram plot. Cluster 1 (blue) was comprised of 

111 experiments, Cluster 2 (purple) = 151 experiments, Cluster 3 (green) = 68 experiments, Cluster 4 

(red) = 34 experiments. Due to small representation (i.e., less than 5% of total number of experiments), 

clusters of size 13 and 2 (white) were omitted from further analysis. 

 

Figure 4. ALE Meta-Analysis of Experimental Clusters. ALE meta-analysis results of experiments 

comprising each dendrogram cluster are shown for the left hemisphere (lateral and medial), axial slices, 

and right hemisphere (medial and lateral). ALE images were thresholded at P<0.05 (cluster-level FWE 

corrected for multiple comparisons; cluster-forming threshold P<0.001 at the voxel-level). 

 

Figure 5. Significant BrainMap Metadata Fields for Each Cluster. Forward and reverse inference 

analyses were performed to identify significant BrainMap metadata for each cluster. The network of 

significant classes is visualized using Cytoscape (Shannon et al., 2003). Here, pathways that connect one 

or more clusters indicate specific terms that were significantly associated with multiple clusters. 
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Figure 6. Enhanced Terms for Metadata Characterization. Category assignments based on the rule set 

were generated for the original set of face experiments in BrainMap. A novel set of non-BrainMap, non-

CogPO terms were derived to annotate each experiment with the specific rule that was applied in each 

instance. These terms were pooled within the clusters of experiments to visualize experimental trends, 

resulting in a clear summary picture of the distribution of face tasks across sub-classes. 
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