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Abstract: The high information content in large data sets from voxel-based meta-analyses is complex,
making it hard to readily resolve details. Using the meta-analysis network as a standardized data
structure, network analysis algorithms can examine complex interrelationships and resolve hidden
details. Two new network analysis algorithms have been adapted for use with meta-analysis networks.
The first, called replicator dynamics network analysis (RDNA), analyzes co-occurrence of activations,
whereas the second, called fractional similarity network analysis (FSNA), uses binary pattern matching to
form similarity subnets. These two network analysis methods were evaluated using data from activation
likelihood estimation (ALE)-based meta-analysis of the Stroop paradigm. Two versions of these data were
evaluated, one using a more strict ALE threshold (P ! 0.01) with a 13-node meta-analysis network, and
the other a more lax threshold (P ! 0.05) with a 22-node network. Java-based applications were developed
for both RDNA and FSNA. The RDNA algorithm was modified to provide multiple subnets or maximal
cliques for meta-analysis networks. Three different similarity measures were evaluated with FSNA to
form subsets of nodes and experiments. RDNA provides a means to gauge importance of metanalysis
subnets and complements FSNA, which provides a more comprehensive assessment of node similarity
subsets, experiment similarity subsets, and overall node-to-factors similarity. The need to use both
presence and absence of activations was an important finding in similarity analyses. FSNA revealed
details from the pooled Stroop meta-analysis that would otherwise require separate highly filtered
meta-analyses. These new analysis tools demonstrate how network analysis strategies can simplify greatly
and enhance voxel-based meta-analyses. Hum Brain Mapp 25:174–184, 2005. © 2005 Wiley-Liss, Inc.
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INTRODUCTION

Functional imaging studies map brain activity during
task performance; however, well-controlled tasks almost
always activate multiple brain regions, commonly desig-
nated “distributed neural networks.” By this terminology,

individual brain regions can be considered nodes within a
network. Location, extent, and activation level vary across
individuals and studies; therefore, standardization is
needed to understand better the nature of such networks.
This standardization is provided by a meta-analysis net-
work, defined as a set of nodes from a voxel-based meta-
analysis. A formal means to create a meta-analysis net-
work using the activation likelihood estimation (ALE)
method was introduced by Turkeltaub et al. [2002]. ALE
determines 3-D volumes of interest (VOIs) from coordi-
nate locations in studies of the voxel-based meta-analysis.
Each VOI represents extent and location of a network
node in standardized brain space, and the full set of VOIs
forms the meta-analysis network. Meta-analysis networks
defined in this format provide a stable framework for the
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application of existing and development of novel network
analysis algorithms.

Formal brain network analysis often has focused on bot-
tom-up strategies [Bower et al., 1998] where networks
evolve from neuron models. Top-down approaches, where
network nodes and interconnectivity are deduced from spa-
tial–functional relationships, are more appropriate for anal-
ysis of meta-analysis networks. Unfortunately, the large
complex data sets associated with meta-analyses present an
overwhelming task for researchers, leaving many relation-
ships within the data undiscovered. Top-down network
analysis strategies provide tools to filter quickly through
such data sets and new ways to view relationships within
these data. An exciting proposition is that these network
analysis tools will reveal new relationships in meta-analysis
networks. Several new meta-analysis network analysis
methods and associated processing tools are reviewed in the
present study.

A clique, which is a mutually connected subset of nodes,
is an important structural feature used in characterizing
networks [Pelillo et al., 1999]. In fact, the maximal clique, a
clique not contained within another clique, has been used as
the basis for comparing 3D molecular structures [Gardiner
et al., 1998] and in particular for proteins [Samudrala and
Moult, 1998]. Replicator dynamics [Bomze and Pelillo, 2000]
can be used to determine a maximal weighted clique from
arbitrary undirected and weighted network graphs. In this
issue, Neumann et al. [2005] present a threshold version of
replicator dynamics network analysis (RDNA) that deter-
mines a “dominant network” for a Stroop meta-analysis
network. There are many algorithms yet to be explored for
analyzing meta-analysis networks, and an especially attrac-
tive approach is based on classic pattern-matching tech-
niques [Anderberg, 1973; Johnson and Wichern, 1988]. Sub-
sets of similar nodes and experiments are the outcome of the
new pattern-matching method called fractional similarity
network analysis (FSNA). Unlike RDNA, which only finds a
single subset of nodes, the FSNA pattern matching method
leads to complete subsets of the data and mimics pattern-

matching activities that researchers use when carrying out
meta-analyses. The structured approach provided by auto-
mated analysis of large complex data sets increases the
likelihood of discovery of obscure patterns.

When multiple studies are pooled in a voxel-based ALE
meta-analysis, not all regions (network nodes) are activated
in each contributing study (e.g., see Table II in Turkeltaub et
al. [2002] and Table VI in Laird et al. [2005a]). Although it is
possible that the pattern of presences/absences is random, it
is far more likely that occurrence patterns are meaningful,
reflecting interpretable variations among the studies. Exper-
imental variations reasonably expected to influence the re-
producibility of activations and the specific patterns elicited
include: differences in the experimental paradigm used (task
and control states), the wording of the instructions to the
subject, the amount of training given to subjects, the subject
population (e.g., age, gender, handedness, educational level,
task skill level, or other factors), the brain imaging modality
used, the imaging field of view (i.e., if less than whole brain),
the sample size of each study, and the statistical threshold
applied in reporting activations. Consequently, tools for ex-
ploring occurrence patterns should be valuable for the neu-
roscientific and technical interpretation of voxel-based meta-
analyses.

Theory

An experiment table (Fig. 1) is the starting point for both
RDNA and FSNA. It summarizes presence (1) or absence (0)
of nodes in each experiment for an ALE meta-analysis. Sum-
ming the values of 1 across rows in this table determines
node incidence. In the table of Figure 1, node 3 has the
highest incidence. Likewise, summing the values of 1 in
columns shows that Experiments 1 and 5 had three nodes
whereas other experiments had two nodes. Binary patterns
from rows can be used to assess similarity between nodes;
likewise, column binary patterns can be used to assess sim-
ilarity between experiments. Similarity measures used in
clustering algorithms for binary patterns are defined most
often using binary matching as summarized in Table I [John-
son and Wichern, 1988]. The similarity measure that tabu-
lates only 1–1 matches between binary patterns (a from
Table I) is the basis for calculating the co-occurrence matrix
used by RDNA, as only co-active nodes are considered
relevant. Similarly, values for b, c, and d are sums for 0–1,
1–0, and 0–0 conditions between two binary patterns.

FSNA pattern analysis

Three similarity coefficients (S1, S2, and S3) were selected
to assess pattern similarity in meta-analysis networks by

Figure 1.
Meta-analysis network experiment table and S1 type similarity
matrices for experiments and nodes.

TABLE I. Binary matching

1 0

1 a b a " b
0 c d c " d

a " c b " d a " b " c " d
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FSNA. The first coefficient is the fraction of 1–1 and 0–0
matches between two patterns and is calculated as S1 # (a
" d)/(a " b " c " d) from Table I. The denominator of this
coefficient is the sum of experiments or nodes, depending on
the pattern type being evaluated. This simple similarity
coefficient is the most general and provides a baseline mea-
sure of similarity. The second similarity coefficient S2 is the
fraction of 1–1 matches, treating 0–0 pairs as nonrelevant. It
is calculated as S2 # a/(a " b " c), and is also called the
Jaccard similarity measure [Anderberg, 1973]. The third sim-
ilarity coefficient S3 tabulates only 1–1 matches, as is done
for the co-occurrence matrix. Its similarity fraction is calcu-
lated as S3 # a/(a " b " c " d). S3 is also known as the
Russel and Rao similarity measure or binary dot product
[Anderberg, 1973]. Figure 1 illustrates matrices of S1 simi-
larity coefficients that are naturally symmetric.

Numerous other similarity measures for binary patterns
are possible, including Euclidean distance (D) and the Pear-
son’s correlation coefficient (R). A common measure used
for clustering of binary patterns is D2 # b " c [Anderberg,
1973], but because it is a measure of dissimilarity we opted
for S1. Pearson’s correlation coefficient is more useful with
continuous data although simple formulae are available for
this calculation with binary patterns [Johnson and Wichern,
1988]. R is less versatile when compared to S1–S3 similarity
measures, and it is not used often as the basis for binary
valued clustering as needed for FSNA.

FSNA subset clustering algorithm

A hierarchical clustering algorithm forms subsets, each with
members more similar to each other than to members of other
subsets. The first step in the clustering algorithm is to form a
subset of patterns with the highest similarity. Nonclustered
patterns are evaluated similarly until all patterns are members
of a subset. Matching is only allowed for fractional similarity
greater than one-half in this example. In the experiment S1
similarity matrix of Figure 1, Experiments 1 and 5 have the
highest similarity coefficient, so subset (1,5) is formed. The next
highest similarity is between Experiment 2 and Experiments 1
and 5. Because Experiments 1 and 5 are in the same subset,
Experiment 2 is appended as a new member forming subset
(1,2,5). The next highest fractional similarity (0.5) is insufficient
for clustering so Experiments 3 and 4 remain as isolated sub-
sets, which completes the clustering. In this case, the clustering
algorithm reduced the initial five experiments to three similar-
ity subsets: (1,2,5), 3, and 4. Clustering using the node S1
similarity matrix in Figure 1 leads to two subsets of nodes
(1,3,4) and 2. Using S2 similarity, the same clustering is seen for
experiments, but nodes cluster as subsets (1,3), 2, and 4. Finally,
S3-type similarity produces clustering similar to S2 for nodes
but different for experiments as (1,5), 2, 3, and 4. This hierar-
chical clustering algorithm is bias free, with the number of
subsets and membership determined by ranking of similarity
coefficients and the clustering threshold. Similarity coefficients
in this example were assumed to be distributed uniformly with
a mean of 0.5. The clustering threshold of $0.5 ensured that
clustering was done with greater than chance similarity. Mean

values for S1–S3 similarity coefficients of the larger patterns
seen with meta-analysis data were naturally distributed more
widely, requiring corresponding changes in cluster thresholds,
described below.

Maximal clique

A clique is defined formally from a network’s graph as a
subset in which all nodes are mutually adjacent [Pelillo et al.,
1999], i.e., every node is connected directly to every other
node in the subset (Fig. 2). A maximal clique is one that is
not contained in any other cliques. The maximum clique is
the maximal clique with the largest number of nodes. As a
practical example, a maximal clique within an ad hoc cell-
phone network is the set of cells that are actively communi-
cating when providing phone service. This is important, as
other cells must not interfere when cells of the maximal
clique are active, and this requirement may hold for distrib-
uted neural networks. Maximal cliques have also been used
as the basis for comparing 3-D molecular structures
[Gardiner et al., 1998] and in particular for proteins [Sam-
udrala and Moult, 1998]. Protein structure cliques are deter-
mined using graph-theory maximal clique algorithms and
associated network graphs. With only associations between
nodes, as is the case with meta-analysis networks, alterna-
tive methods based on replicator dynamics approach have
been utilized to determine maximal weighted cliques
[Bomze and Pelillo, 2000; Pelillo et al., 1999]. Replicator
dynamics has also been used with functional magnetic res-
onance imaging (fMRI) data to find coherent subnets where
each node is claimed to be “as close to as many other nodes
as possible” [Lohmann and Bohn, 2002], with closeness
(node similarity) defined using Spearman’s rank correlation.
Neumann et al. [2005] suggest that the maximal weighted
clique for a meta-analysis network is the “dominant net-
work” and will “likely play a critical role in an investigated

Figure 2.
Examples of clique, maximal clique, and maximum clique for a
simple network.
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cognitive task.” Because of the nonzero threshold of 1/n (n
# number of elements in a pattern) used in determining
clique membership with replicator dynamics [Lohmann and
Bohn, 2002; Neumann et al., 2005] the result may be a subset
of the maximal clique, although in many studies maximal
cliques have been reported consistently [Bomze and Pelillo,
2000; Pelillo et al., 1999].

MATERIALS AND METHODS

Data

Data for testing RDNA and FSNA were taken from the
pooled Stroop ALE meta-analysis carried out by Laird et al.

[2005a,b], which used 205 foci from 19 experiments. Two
subsets of this data were formed, one using a false discovery
rate (FDR)-corrected ALE cluster threshold of P ! 0.01
(ALE-P01), which provided a meta-analysis network of 13
nodes or VOIs. The second dataset was created using ALE
with a less restrictive FDR-corrected threshold of P ! 0.05
(ALE-P05) and resulted in a meta-analysis network of 22
nodes. Table II and Table III summarize node and experi-
ment data for the ALE-P01 Stroop meta-analysis. Nodes
were numbered according to volume. Talairach coordinates
in Table II were used in conjunction with the Talairach
Daemon [Lancaster et al., 2000] to determine anatomical
labels. The only change was that Node 1 was designated

TABLE II. Node summary for pooled ALE-P01Stroop meta-analysis

Node x y z
Experiments/

node
Volume
(mm3) Anatomical label

Brodmann
area

1 1 16 38 11 4,288 R anterior cingulate 32
2 %44 5 33 8 1,680 L inferior frontal gyrus 9
3 %40 %50 44 3 992 L inferior parietal lobule 40
4 %42 23 10 5 744 L inferior frontal gyrus 13
5 %48 9 11 4 696 L inferior frontal gyrus 44
6 %21 %72 36 4 552 L precuneus 7
7 46 9 28 3 448 R inferior frontal gyrus 9
8 %3 38 25 2 360 L anterior cingulate 32
9 36 12 7 3 312 R insula 13
10 20 48 23 2 272 R superior frontal gyrus 10
11 %42 30 31 3 200 L mid frontal gyrus 9
12 %45 %42 36 2 192 L supramarginal gyrus 40
13 %26 22 5 1 184 L insula (claustrum) —

TABLE III. Experiment summary for pooled ALE-P01 Stroop meta- analysis

Experiment
Nodes/

experiment Author* Control type
Response

type Modality

Statistics
Subjects

(n)Type P

1 1 Taylor Neutral Verbal PET t, z !0.001 10 ! n ! 20
2 2 Carter, 1995 Congruent Verbal PET t, z !0.005 10 ! n ! 20
3 1 Derbyshire Congruent Verbal PET t, z !0.001 !10
4 0 Bench Neutral Verbal PET t, z !0.05 !10
5 5 Leung Congruent Verbal ER fMRI t, z !0.005 10 ! n ! 20
6 3 Brown Combination Verbal Block fMRI t, z !0.05 !10
7 8 Peterson, 1999 Congruent Verbal Block fMRI t, z !0.05 $20
8 1 Carter, 2000 Congruent Verbal ER fMRI Other !0.01 10 ! n ! 20
9 0 MacDonald Congruent Verbal Block fMRI Other !0.005 10 ! n ! 20
10 4 Banich Neutral Manual Block fMRI Other !0.05 10 ! n ! 20
11 5 Steel Nonlexical Verbal Block fMRI Other !0.01 !10
12 4 Milham, 2001 Neutral Manual ER fMRI t, z !0.05 10 ! n ! 20
13 3 Milham, 2002 Combination Manual Block fMRI Other !0.0025 10 ! n ! 20
14 1 Mead Congruent Manual Block fMRI t, z !0.05 10 ! n ! 20
15 2 George Nonlexical Verbal PET t, z !0.01 $20
16 1 Pardo Congruent Verbal PET t, z !0.01 !10
17 3 Fan Congruent Manual ER fMRI t, z !0.05 10 ! n ! 20
18 4 Peterson, 2002 Congruent Verbal ER fMRI t, z !0.005 10 ! n ! 20
19 3 Ruff Neutral Manual Block fMRI t, z !0.05 10 ! n ! 20

* References are provided in Laird et al., 2005a.
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anterior cingulate though its Talairach Daemon label was
cingulate cortex.

RDNA

Neumann et al. [2005] provide an excellent discussion of
the methods involved in using replicator dynamics with an
ALE meta-analysis, and we subsequently developed a Java
application based on their methodology. ALE VOIs were
formed using the method described by Laird et al. [2005b].
These VOIs are used to inspect coordinates from each ex-
periment to determine the nodes that are active (1) and
inactive (0). Results are tabulated and stored in an experi-
ment table following the format in Table I. The experiment
table is analyzed to formulate a matrix of co-occurrence
values for each pair of nodes. From the co-occurrence ma-
trix, RDNA determines a maximal clique for the meta-anal-
ysis network. Verification of the maximal clique algorithm in
the RDNA application was done using the example experi-
ment table and co-occurrence matrix from Neumann et al.
[2005]. Although Neumann et al. [2005] reports only a single
dominant network, Lohmann and Bohn [2002] described a
method for determining additional networks using replica-
tor dynamics that was applicable in fMRI data, not meta-
analysis networks. RDNA software was modified so that
multiple maximal cliques could be determined from a meta-
analysis network. The algorithm assumes that the co-occur-
rence matrix is a summation of co-occurrences from subnet-
works, each of which is a maximal clique. After the
determination of the first maximal clique, its co-occurrences
are subtracted from the co-occurrence matrix and the pro-
cessing is repeated to find the next maximal clique. This
recursive approach continues until no further maximal
cliques can be determined. An important feature of RDNA is
that the first maximal clique theoretically is the most impor-
tant, with each subsequent clique having diminished impor-
tance.

FSNA Threshold

The mean S1 similarity coefficient (&0.6) was much larger
than were the S2 and S3 coefficients. The operational clus-
tering threshold used for S1 similarity was 0.5 and clustering
was always complete above a coefficient of 0.6. The S2
coefficient was slightly larger than the S3 coefficient was, but
their average across all studies was very low (&0.10). The
small similarity fractions for these measures resulted from
the low incidence of active nodes reported in many of the
Stroop experiments (Table II and III). The operational clus-
tering threshold for S2 and S3 was set at zero. All clustering
using S2 and S3 similarity was complete well above this
threshold and slightly above the mean similarity coefficient
(0.10). Our choice of threshold was to let the data naturally
cluster above the threshold. In fact, we could have used a
threshold of zero without any change in outcome, so we feel
that this was a reasonable threshold strategy.

FSNA Clustering

For the large node and experiment patterns, the clustering
strategy was augmented using a voting paradigm where
patterns with n highest similarity coefficients had n votes.
Indices of the highest similarity coefficients indicated which
pattern the votes were for. The pattern having the most
votes was clustered first. A slightly different approach was
preferred for node clustering, where node size determined
voting order. During clustering, votes were tallied and the
pattern (node or experiment) was moved to the subset re-
ceiving the most votes. If none of the votes were for mem-
bers of subsets, then a new subset was formed to include the
voting pattern and all those receiving votes. In cases of ties,
additional votes were tallied using the next highest similar-
ity coefficients. This clustering approach successfully
formed clusters for all data evaluated.

FSNA Application

A Java application similar to that for RDNA was devel-
oped for FSNA. Similarity measures for all pairs of patterns
in the experiment table were organized into two matrices
using this software, one tabulating similarity between ex-
periments and the other similarity between nodes (Fig. 1).
These similarity matrices are square and symmetric with
dimension equal to the number of experiments or nodes. For
the experiment similarity matrix in Figure 1, the similarity
coefficient at row 2 and column 5 is 0.75. This is the S1
similarity coefficient comparing experiment binary patterns
in columns 2 and 5 of the experiment table. Likewise the
value in row 2 and column 4 in the node similarity matrix is
0.40. This is the S1 similarity coefficient comparing node
binary patterns in rows 2 and 4 of the experiment table.

Experiments

Large experiment tables similar the one in Figure 1, de-
rived from the 19 experiments of the pooled Stroop meta-
analysis, were formulated for ALE-P01 and ALE-P05 data
sets. Each experiment table was processed using RDNA to
determine maximal cliques. Each experiment table was also
processed using FSNA to determine node and experiment
subsets. Similarity coefficient matrices similar to those in
Figure 1 were generated using S1, S2, and S3 similarity
coefficients. The FSNA clustering algorithm was applied to
the similarity coefficient matrices to create similarity subsets.

RESULTS

Node Clustering

The stricter ALE-P01 threshold produced fewer nodes
than did the ALE-P05 threshold (13 vs. 22) and this led to
fewer subsets (Table IV). RDNA cliques in Table IV are
ordered according to their number of occurrences (in paren-
thesis) and FSNA similarity subsets by average similarity.
Not all cliques are tabulated as many were found (19 for
ALE-P01 data and 38 for ALE-P05 data). S3 similarity failed
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to form multiple subsets for either ALE-P01 or ALE-P05
data.

ALE-P01 data

RDNA. For the ALE-P01 data, RDNA reported the first
maximal clique as nodes (1,2), much smaller than the five-
node dominant network reported by Neumann et al. [2005].
Removal of occurrences from the high incidence (1,2) clique
by RDNA led to a five-node maximal clique consistent with
the five-node network reported by Neumann et al. [2005].
This second maximal clique (1,2,6,7,11) contained the (1,2)
clique and therefore was considered more important in the
ALE-P01 meta-analysis network. The additional nodes
(6,7,11) in the second maximal clique were not just those of
next highest incidence. Importantly, the second maximal
clique (1,2,6,7,11) was more like the S1 (1,2,7,11) and S2
(1,2)(7,11) similarity subsets determined by FSNA. The (1,2)
maximal clique was reported as the (1,2) S2 similarity subset
and the (1,4,5) and (2,3,6) maximal cliques were found in
separate S2 similarity subsets, indicating that smaller maxi-
mal cliques are more like S2 similarity subsets than like S1
subsets for this data. An obvious difference between RDNA
and FSNA is that FSNA clusters nodes into mutually exclu-
sive subsets whereas the maximal cliques of RDNA are
subnets, which can share nodes. For example, the first four
maximal cliques from RDNA include nodes 1 or 2 three
times.

FSNA. The smallest similarity subset (3,6,10) was the same
for both S1 and S2 similarity, with S2 subsets seen as sub-
divisions of S1 subsets. Grouping of two finer subdivisions

such as (1,2) and (7,11) from S2 similarity leads to the
(1,2,7,11) subset for S1 similarity. Interestingly the (3,6,10),
(4,5,8,9,12,13), and (1,2,7,11) S1 similarity subsets have very
different spatial distributions (Fig. 3). The smallest subset
(3,6,10; Fig. 3, green) has the greatest anterior–posterior
(A–P) span whereas the largest subset (4,5,8,9,12,13; Fig. 3,
violet) is mostly inferior to the other two subsets. Impor-
tantly, this spatial segregation came only from pattern
matching because node location was not an explicit factor in
the clustering algorithm. These subsets are special subnets of
the meta-analysis network. As such, anterior and posterior
rostral caudate zones rCZa (node 8) and rCZp (node 1) were
naturally parcellated into different subnets, consistent with
the somatotopic assignments reported by Laird et al. [2005a].
Inspection of Table VI shows that node 8 (rCZa) was re-
ported most often in experiments using manual response
with nonlexical or combined controls whereas node 1 (rCZp)
was reported with similar incidence among control and
response types, i.e., most involved with the paradigm. An
additional level of parcellation of these nodes is seen in the
S2 subsets where node 1 (rCZp) and node 2 (left inferior
gyrus, Brodmann area [BA] 9) form an isolated subset (1,2).
In this subset node 2 was most often reported in experiments
using manual response (Table VI). In addition, node 8
(rCZp) and node 13 (insular cortex) form isolated subset
(8,13). These nodes were most often reported in experiments
using nonlexical or combination-type control and manual
response (Table VI). Although not providing the level of
detail as seen in Figure 6 in Laird et al. [2005a], these
findings are important because they were obtained using
pooled Stroop data without separate verbal and manual
Stroop analyses.

ALE-P05 data

The number and size of nodes increased for the ALE-P05
data and some nodes in the P05 data were made up of two
nodes from the P01 data. This complicated the use of num-
bers to indicate results for the P05 data. P05-to-P01 number
correspondence was found for all nodes but 5 and 12 of the
13-node P01 data. The additional nodes 14–22 of the ALE-
P05 data had no corresponding nodes in the P01 data. ALE-
P05 results in Table IV use equivalent P01 numbering for
nodes 1–13.

RDNA. The first ALE-P05 maximal clique was substantially
different from the first ALE-P01 maximal clique. However. it
did contain three nodes common to the second ALE-P01
maximal clique, nodes 1, 2, and 7, and was consistent with
the five-node dominant network reported by Neumann et al.
[2005]. Beyond the first maximal clique, no clear relationship
was seen with other ALE-P01 cliques.

FSNA. Changes in S1 and S2 subsets with changing ALE
threshold were more predictable, with some changes seen as
new nodes appended to existing subsets. For example, the
(1,2,7,11) S1 subset from the ALE-P01 data falls within the
(1,2,7,11,19,21) S1 subset of the ALE-P05 data. The additional
node 19 (light blue, Fig. 3) seems to be a right side equivalent

TABLE IV. Node subsets for Stroop
meta-analysis networks

RDNA Maximal
cliques

FSNA

S1 similarity S2 similarity

ALE-P01 (13 nodes)
1,2 (6) 3,6,10 3,6,10
1,2,6,7,11 (1) 4,5,8,9,12,13 7,11
1,4,5 (2) 1,2,7,11 8,13
2,3,6 (2) 1,2

4,5,9,12
ALE-P05 (22 nodes)
1,2,4,7,9 (3) 8,13a,b 13a,b

1,2,3,6 (3) 1,2,7,11,19,21 11,19,21
3,4,9,10 (2) 20,22 20,22
1,9,11,19,21 (1) 17,18 4,8,9
4,6,8,16 (1) 15,16 3,10
2,11,20,22 (1) 4,9 17,18

3,10 1,2,7
6,14 6,14,15,16

a No corresponding ALE-P01 node; right posterior cingulate, Brod-
mann area 23.
b No corresponding ALE-P01 node; right precuneus, Brodmann
area 7.
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of node 11, both in middle frontal gyrus and in BA9. The
additional node 21 was in putamen. Other S1 subsets formed
into various groups with the additional nodes 14–22. As
seen with the ALE-P01 data, S1 subsets of the ALE-P05 data
can be formed from combinations of its S2 subsets.

Experiment Clustering

As was seen with node clustering, FSNA S2 similarity
produced more and generally smaller subsets than S1 sim-
ilarity (Table V, column 1). Unlike that with node clustering,

S2 experiment subsets do not seem to be subgroups of S1
subsets. Thresholds used for experiment clustering were the
same as used for node clustering. Two experiments (4 and 9)
did not appear in the S2 subsets because these experiments
reported no activations within the ALE VOIs used in gen-
erating the experiment table, and were not relevant for S2
similarity.

A nice feature of binary similarity coefficients is that they
can also be used to compare experiment subsets with exper-
iment factors of interest. For the ALE P01 data, this compar-

Figure 3.
Nodes for S1 similarity subsets are illustrated in standard views
provided by BrainMap Search&View. The S1 similarity subset
(1,2,7,11; dark blue) best matched maximal cliques. The largest S1
similarity subset (4,5,8,9,12,13; violet) consists of mostly left, infe-

rior, and anterior nodes, and the smallest S1 similarity subset
(3,6,10; green) has the greatest A–P extent. Nodes are depicted
graphically not according to their ALE volumes.

TABLE V. Profile of experiment subsets for pooled ALE-P01 Stroop meta-analysis

Experiment subset

Control Response Modality Statistic

Congruent Neutral Nonlexical Combo Verbal Manual PET Block fMRI ER fMRI (t,z) Other

S1 Similarity
3,5,6,8,13,16,19 0.526 0.474 0.526 0.737 0.474 0.526 0.526 0.526 0.579 0.421 0.579
1,2,4,9,11,14,15,17,18 0.526 0.474 0.632 0.421 0.579 0.421 0.632 0.0421 0.474 0.526 0.474
7,10,12 0.421 0.789 0.737 0.737 0.263 0.737 0.526 0.632 0.684 0.316 0.684

S2 Similarity
3,8,16 0.632 0.579 0.737 0.737 0.474 0.526 0.737 0.421 0.684 0.316 0.684
5,13,14,19 0.474 0.632 0.684 0.789 0.211 0.789 0.474 0.684 0.632 0.368 0.632
2,7,10,12 0.474 0.737 0.684 0.684 0.316 0.684 0.579 0.579 0.632 0.368 0.632
1,6,11,15,17,18 0.368 0.526 0.789 0.684 0.526 0.474 0.579 0.474 0.632 0.474 0.526

Boldface type indicates highest similarity by subset in each of the four profile categories.
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ison was based on similarity between pairs of 19-element
binary patterns, one for experiment subsets and one for
experiment factors. Setting bit values to 1 for the experi-
ments in the similarity subset and 0 otherwise forms a
19-element binary pattern for each experiment subset. A
similar set of binary patterns can be formed for each exper-
iment factor. Eleven experiment factors were grouped into
four categories for the comparison (Table V). The largest
similarity fractions provide an indication of which factor in
each category best relates to each experiment subset. Paired
(control, response) profiles, based on largest response simi-
larity, were either (neutral, manual), (nonlexical, verbal), or
(combination, verbal). The (nonlexical, verbal) S1 similarity
profile favored positron emission tomography (PET) as the
modality and t, z as the statistic, and the other two S1
profiles favored event-related (ER) fMRI as the modality and
a statistical approach other than t, z. These findings gener-
ally were consistent with visual inspection of the experiment
summary in Table III. S2 similarity often had conflicts with
the S1 similarity analysis and therefore was not considered
appropriate for experiment analysis. This conflict seems me-
diated by the fact that S2 similarity does not consider ab-
sence as relevant.

A comprehensive node-to-experiment profile can be cal-
culated using all nodes from the pooled ALE-P01 data. For
this profile study, 19-element experiment patterns for each
node from the experiment table are compared to 19-element
experiment factor patterns. As such, this profile does not
depend on clustering by either RDNA or FSNA. Similarity
between nodes and experiment factors is then measured
using the S1 similarity coefficient.

A review of Table VI shows the highest mean similarity
for control type was for experiments using nonlexical and

combination controls. This was followed by neutral and
finally by congruent, which had the lowest relationship
across nodes. These observations are consistent with the
claim that nonlexical and combination controls are preferred
over the congruent control, due to the higher attentional
requirements of the congruent condition [Milham et al.,
2002].

Experiments using manual response had the highest sim-
ilarity with node 2 (left inferior frontal gyrus, BA9) and node
6 (left precuneus, BA7). Experiments using verbal response
had the highest similarity with node 5 (left inferior frontal
gyrus, BA44). These response-to-node relationships, based
only on ranking of similarity coefficients from the pooled
Stroop meta-analysis data, are consistent with findings from
the more detailed verbal and manual Stroop meta-analyses
reported in Table V of Laird et al. [2005a].

Several additional factors were included in the Table VI
profile to determine P value and group size effects. Mean
similarity across nodes increased as the experiment P value
changed from the all P ! 0.05 to the all P ! 0.001. This was
anticipated because the largest variety of experiments (19)
were included in the all P ! 0.05. The all P ! 0.005 included
11 experiments, whereas the all P ! 0.001 had only two
experiments. The two experiments in this latter group (Ex-
periments 1 and 3) were indeed similar across tested factors,
differing only by control type (Table III). A strong group-
size effect was seen, with the largest group studies (n $ 20
subjects) showing the highest indices of similarity and with
similarity diminishing with diminishing group size. This
finding is consistent with the assumption that studies with
larger numbers of subjects replicate better than do smaller
group subject studies.

TABLE VI. Profile of all nodes for pooled ALE-P01 Stroop meta-analysis

Node

Control Response P threshold Group size (n)

Congruent Neutral Nonlexical Combo Verbal Manual !0.05 !0.005 !0.001 $20 10 ! n ! 20 !10

1 0.421 0.474 0.421 0.526 0.474 0.526 0.579 0.368 0.421 0.421 0.421 0.579
2 0.474 0.632 0.474 0.579 0.211 0.789 0.421 0.526 0.474 0.579 0.684 0.421
3 0.526 0.684 0.737 0.737 0.368 0.632 0.158 0.579 0.737 0.842 0.421 0.158
4 0.526 0.474 0.737 0.737 0.474 0.526 0.263 0.579 0.632 0.737 0.421 0.263
5 0.474 0.526 0.789 0.789 0.526 0.474 0.211 0.526 0.684 0.789 0.263 0.211
6 0.474 0.737 0.684 0.684 0.211 0.789 0.211 0.421 0.684 0.789 0.474 0.211
7 0.526 0.684 0.737 0.737 0.368 0.632 0.158 0.579 0.737 0.842 0.421 0.158
8 0.474 0.632 0.895 0.789 0.316 0.684 0.105 0.526 0.789 0.789 0.263 0.105
9 0.421 0.684 0.842 0.737 0.474 0.526 0.158 0.684 0.842 0.737 0.316 0.158
10 0.579 0.632 0.789 0.789 0.421 0.579 0.105 0.632 0.789 0.895 0.368 0.105
11 0.526 0.579 0.737 0.843 0.368 0.632 0.158 0.684 0.737 0.842 0.421 0.158
12 0.368 0.737 0.895 0.789 0.316 0.684 0.105 0.526 0.789 0.895 0.368 0.105
13 0.421 0.684 0.947 0.842 0.368 0.632 0.053 0.579 0.842 0.842 0.211 0.053
Max 0.579 0.737 0.947 0.842 0.526 0.789 0.579 0.684 0.842 0.895 0.684 0.579
Mean 0.478 0.628 0.745 0.737 0.377 0.623 0.207 0.555 0.704 0.769 0.389 0.207
Median 0.474 0.632 0.737 0.737 0.368 0.632 0.158 0.579 0.737 0.789 0.421 0.158
Min 0.368 0.474 0.421 0.526 0.211 0.474 0.053 0.368 0.421 0.421 0.211 0.053

Boldface type indicates highest similarity in each of the control and response subcategories. Mean values are also in boldface type.
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DISCUSSION

RDNA

The replicator dynamics method for determining a maxi-
mal clique was extended to find additional cliques for meta-
analysis networks. The importance of this capability was
seen for the ALE-P01 data where RDNA determined a two-
node first maximal clique (1,2) (Table IV). This two-node
outcome could have easily been predicted from Table II
where nodes 1 and 2 are seen to have significantly higher
incidences. If replicator dynamics only report this maximal
clique, little would be gained from the analysis. The second
maximal clique from the ALE-P01 data was similar to the
first maximal clique from the ALE-P05 data, and both were
consistent with the dominant network reported by Neu-
mann et al. [2005], who used an ALE-P05 type threshold but
differing numbers of experiments and nodes. This finding
shows that important cliques exist in a meta-analysis net-
work and can be found beyond the first using the recursive
algorithm of RDNA. Determination of the first maximal
clique by RDNA in the ALE-P05 data benefited from having
more and larger nodes. This was due partly to the more
uniform distribution of node incidence, where the disper-
sion in node incidence (relative standard deviation) in the
first six nodes dropped from 0.52 for ALE-P01 data to 0.35
for ALE-P05 data.

The node weights [Neumann et al., 2005] assigned by
replicator dynamics to the (1,2) maximal clique summed to
0.944 rather than to the target value of 1.000. We noted that
nodes 6, 7, and 11 accounted for almost all of the residual
weight (0.0549), but that each node weight was too small to
be clustered with the first maximal clique using the cluster-
ing threshold of 1/n # 1/13 # 0.077. The summed weights
of the other three ALE-P01 cliques in Table IV were all
greater than 0.99. If the node-clustering strategy had been to
add moderate-weight nodes to the clique until the summed
weight exceeded 0.99, then the first maximal clique for the
PO1 data would have been (1,2,6,7,11) rather than (1,2). This
strategy seems reasonable because node weights beyond the
additional three were several orders of magnitude smaller.
Because there were more nodes in the ALE-P05 data, the
clustering threshold was smaller (1/22 # 0.045), and this
was partly responsible for more nodes in the first maximal
clique in that data. The above-suggested node-clustering
strategy should avoid the problem mentioned in the theory
section, that a clique determined using a 1/n threshold
might be a subset of the maximal clique. The proposed
summed node-weight approach has not yet been evaluated,
but this clustering method will be added to the RDNA
software and testing carried out to determine its capabilities.

Although the significance of additional cliques is not clear
in this study, it is believed that important network informa-
tion can be found among those cliques. Maximal cliques are
determined by maximizing co-occurrence [Neumann et al.,
2005], and this is reflected by the order in which they are
determined by RDNA. Dominance within the overall net-
work structure therefore is expected to follow maximal

clique order, and this is useful information that is not pro-
vided by FSNA.

FSNA

In the context of analyzing a single study, failure to find
activation is usually regarded as noninformative. In a meta-
analytic setting, the hierarchical structure of the observation
model, induced by having many studies, renders informa-
tive the frequency of not reporting activations. This infor-
mation is exploited by the S1 similarity measure and ignored
in the S3 measure. Of the three similarity coefficients eval-
uated, S1 provided the greatest utility in analysis of meta-
analysis networks. It was used to formulate node subsets
(Table IV), experiment subsets (Table V), and node-to-exper-
iment profiles (Table VI). The Jaccard or S2 similarity was
intermediate in binary pattern-matching capability as it re-
tained 1–0 and 0–1 mismatches in its formula. S2 similarity
provided finer subdivisions of the S1 similarity node sub-
sets, which add to the attractiveness the FSNA network-
processing tool. It was not seen to be useful in the analysis of
experiment subsets. The S3 similarity coefficient failed to
form multiple node or experiment subsets for data from the
Stroop meta-analysis. S3 similarity ignores the 1–0, 0–1, and
0–0 binary pairs when carrying out pattern analysis and
therefore led to the smallest similarity coefficients. The high
incidence of nodes 1 and 2 dominated S3 similarity, causing
all other nodes to be maximally associated with these two
nodes, masking other associations, and leading to a single
subset. S3 similarity coefficients therefore were not deemed
appropriate for forming subsets of nodes or experiments;
however, co-occurrence, which is linearly related to the S3
similarity coefficient, was well suited for analysis by RDNA.

Unlike RDNA, FSNA performed well with both ALE
threshold data sets. Because we only detailed APE-P01 data
in tables, explanation of FSNA results focused on that data.
An important result was that several key node relationships,
only seen using separate verbal and manual ALE Stroop
meta-analyses [Laird et al., 2005a], were found using just the
pooled data from the ALE-P01 Stroop meta-analysis.
Achievement of this level of detail without extensive reanal-
ysis is a very attractive feature of FSNA. The ability of FSNA
to form subsets of experiments distinguishes it from RDNA,
which was designed for network node analysis only. The
information in profile tables such as Table V provide the
researcher a means to rapidly review factors that best relate
to the naturally determined experiment subsets. The S1 sim-
ilarity of FSNA was also used to form the overall ALE node
profile as seen in Table VI. The large feature set provided by
FSNA make it a very attractive new tool for automated
analysis of meta-analysis networks.

Meta-Analysis Networks

ALE determines a collection of brain VOIs that form a
meta-analysis network, and RDNA and FSNA enhance this
data with special subsets. However, these analysis tools do
not provide details of internodal connectivity. For example,
in a coherently activated three-node network there are four
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possible node-link configurations, one a maximal clique
(lower right, Fig. 4). The co-occurrence matrix, which serves
as the basis for RDNA, has the ability to encode these four
configurations. Co-occurrence values derived from a meta-
analysis network experiment table will encode a three-node
clique regardless of the node-link configuration. The prob-
lem reported by Lohmann and Bohn [2002] with the other
three node-link configurations is avoided because the co-
occurrence network cannot encode them. Not surprisingly,
RDNA returns (1,2,3) as the maximal clique for this network.
The point is that all co-active nodes in a meta-analysis net-
work are cliques. We expanded on this point by assuming
that the co-occurrence matrix for a meta-analysis network is
a summation of co-occurrences from its constituent cliques.
This is the basis for the recursive algorithm used by RDNA
to determine multiple cliques in a meta-analysis network.

The inability to encode connectivity becomes more serious
as the number of nodes in a network increases. In the context
of functional imaging studies, coherently activated nodes
are active within the image acquisition time interval, and the
order or duration of activations is not known. Event-related
potential (ERP) experiments with temporal resolution suffi-
cient to determine the sequence of activated nodes could be
helpful in resolving node-link configurations. In addition,
the ability of TMS to temporarily disable network nodes and
observe the remainder of the network could be helpful for
resolving node-link configuration. With this additional in-
formation, the co-occurrence matrix could be formulated
more accurately and perhaps more meaningful subnetworks
determined.

In functional imaging studies, experiments are defined
based on control and test conditions and response type.
Statistical parametric images are formed to investigate the
system-level network differences between fixed control and
varying test conditions. A different contrast strategy was
seen for Stroop functional imaging studies, where the incon-
gruent test condition was contrasted with either neutral,
congruent, nonlexical, or a mixture of control conditions, i.e.,
the control condition was varied rather than the test condi-

tion. The former approach investigates distributed neural
networks relative to a fixed control state, whereas the latter
approach investigates networks relative to a fixed test state.
These differences should be emphasized when reporting
findings. Moreover, for Stroop meta-analysis two response
types of were seen: verbal and manual; therefore, there were
eight possible network configurations (four controls ' two
responses) for the Stroop meta-analysis. The S1 similarity
profile by experiments (Table V) indicated three dominant
groupings of control–response profiles for the ALE-P01:
(neutral, manual), (nonlexical, verbal), and (combination,
verbal) simplifying organization of findings.

Meta-Analytic Functional Connectivity and Beyond

Functional connectivity is a statistical dependency be-
tween responses in one part of the brain and another. Usu-
ally, this dependency is assessed in terms of within-subject
correlations, but occasionally these dependencies are deter-
mined from correlations over subjects within a study. The
co-occurrence of activations among nodes of a meta-analytic
network harnesses exactly the same statistical dependency
to infer functional connectivity among the nodes using cor-
relations or similarities over studies. In this sense, the meta-
analysis networks are linked conceptually to the functional
connectivity networks defined at a study and subject level.
In the context of meta-analysis networks, the source of vari-
ation inducing these dependencies are subtle changes in
experimental design that can be characterized in terms of the
statistical dependencies over experiments.

Although automated analysis tools for meta-analysis net-
works are useful to determine network subsets that associate
with contrasted conditions, they do not assess node activa-
tion levels or strength of internodal links. These tools pro-
vide an excellent framework for analysis of internodal inter-
actions using other processing strategies such as structural
equation modeling [Horowitz et al., 1999; McIntosh et al.,
1994] and dynamic causal modeling [Friston et al., 2003].

CONCLUSIONS

Findings of the Stroop meta-analysis using RDNA and
FSNA generally were consistent with those obtained manu-
ally. RDNA provides a means to assess relative activity of
networks, which helps to gauge the importance of network
findings by both RDNA and FSNA. FSNA revealed details
within the pooled meta-analysis data that required multiple
highly filtered meta-analysis data sets when processed man-
ually. S1- and S2-type similarity together provide a hierar-
chical view of node associations. S3-type similarity failed to
form multiple subsets and was judged unsatisfactory. FSNA
provides a more comprehensive meta-analysis assessment
than RDNA does, with tables for node similarity subsets,
experiment similarity subsets, and overall node-to-factors
similarity.
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