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We propose a new exploratory method for the discovery of partially directed functional networks from fMRI
meta-analysis data. The method performs structure learning of Bayesian networks in search of directed
probabilistic dependencies between brain regions. Learning is based on the co-activation of brain regions
observed across several independent imaging experiments. In a series of simulations, we first demonstrate
the reliability of the method. We then present the application of our approach in an extensive meta-analysis
including several thousand activation coordinates from more than 500 imaging studies. Results show that
our method is able to automatically infer Bayesian networks that capture both directed and undirected
probabilistic dependencies between a number of brain regions, including regions that are frequently
observed in motor-related and cognitive control tasks.
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Introduction

Since the advent of functional neuroimaging, the number of
experimental studies published each year has grown exponentially,
with a total of approximately 9500 fMRI studies published so far in
English language journals alone (Derrfuss andMar, 2009). Despite the
use of standardized coordinate systems, scanning parameters, and
analysis techniques, this wealth of imaging data still conveys a
variable picture, in particular with respect to higher-order brain
functioning. The need to consolidate results across studies thus calls
for analysis techniques on the meta-level. Moreover, neuroimaging
research is currently advancing from “simple” function–structure
mapping in the brain to the analysis of complex cognitive processes
and interdependencies between brain regions. These research ques-
tions cannot be addressed by isolated imaging experiments, but again
require the concerted evaluation of imaging results across different
cognitive tasks and experimental setups.

In recent years, a number of quantitative meta-analysis techniques
have emerged. These methods facilitate the identification and
modelling of individual brain regions that show a consistent response
across experiments as well as the search for functional networks that
capture multivariate co-activations patterns across several brain
regions (Turkeltaub et al., 2002; Chein et al., 2002; Wager et al.,
2003; Nielsen and Hansen, 2004; Nielsen, 2005; Laird et al., 2005a;
Lancaster et al., 2005; Neumann et al., 2005, 2008; Eikhoff et al.,
2008). Some of the most recently developed techniques thereby
capitalize on the ability to simultaneously evaluate activation patterns

across several experimental paradigms (Robinson et al., in press;
Smith et al., 2009; Toro et al., 2008).

In this paper we propose a new method for the discovery of
partially directed networks of brain regions from meta-analysis data.
Our method builds on the use of Bayesian networks for the
representation of statistical dependencies. It takes as observational
data co-activation patterns of brain regions across imaging studies
and performs structure learning for directed acyclic graphs.

The detection of interdependencies between brain regions has
recently become one of the most researched methodological ques-
tions. A number of network analysis techniques have been proposed
both on the level of individual imaging experiments, including
structural equation modelling (SEM) and dynamic causal modelling
(DCM), and on the meta-analysis level, including fractional similarity
network analysis (FSNA) and replicator dynamics (McIntosh and
Gonzalez-Lima, 1994; Büchel and Friston, 1997; Goncalves and Hall,
2003; Friston et al., 2003; Neumann et al., 2005; Lancaster et al.,
2005).

Our new method presented in this paper differs from these
techniques in several aspects. First, unlike confirmatorymethods such
as SEM and DCM that require strong a priori hypotheses about
interdependencies between brain regions, we follow an exploratory
approach. That is, in the absence of any pre-defined model, we infer
with our method possible functional interdependencies between
brain regions from observational data alone.

Secondly, we wish to determine interdependencies between brain
regions on the most general level possible, and thus employ a meta-
analysis technique. Since the collective evaluation of individual fMRI
time series is not workable on this level of analysis, we consider as
observational data the co-activation of brain regions across several
functional imaging studies.
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Thirdly, existing network analysis techniques on the meta-level so
far explore activation coordinates in search of undirected functional
networks that represent multivariate co-activation patterns across
brain regions. Going beyond these approaches, with our new method
we focus on the directionality of multivariate relations between
functional regions.

Fourthly, results of our method represent probabilistic dependen-
cies between brain regions rather than functional or effective
connectivities (as determined with SEM and DCM) or the mere co-
activation of brain regions (as represented in FSNA and replicator
dynamics networks). In other words, with our method we can infer
from observational data whether and how the activation of one
functional region statistically depends on the activation of others.

Mathematically, probabilistic dependencies are characterized by
the concept of conditional probabilities. Multivariate probabilistic
dependencies can be conveniently represented by graphical models
where nodes in a graph represent random variables and links
between nodes represent their statistical interdependencies. Out of
the rich family of graphical models, we confine our investigations to
the use of Bayesian networks. Although this choice restricts the
application of our method to acyclic graphs, it was made for the
following two reasons. Firstly, Bayesian networks belong to the class
of directed graphical models, which enables us to investigate directed
interdependencies between the activation of different brain regions.
Secondly and most importantly, the structure of Bayesian networks
can be inferred from observational data. In other words, we can learn
the statistical interdependencies between the brain regions from
activations observed across a number of imaging experiments. While
for less restrictive graphical models, learning the underlying structure
from observational data is impossible or requires a prohibitive
amount of data, algorithms for learning the structure of Bayesian
networks are well researched (Verma and Pearl, 1990; Chickering et
al., 1995; Buntine, 1996; Krause, 1998; Pearl, 2000; Acid and de
Campos, 2003; Steyvers et al., 2003; Chen et al., 2006) and, as we will
show in this paper, operate to a satisfactory level even when applied
to relatively few observations.

However, the amount of available data remains a critical issue in
the use of structure-learning algorithms, even for Bayesian networks.
In our context, we face the problem of data sparsity, as every imaging
study in our meta-analysis approach provides only a single data
sample for the structure-learning algorithm. The investigation of the
number of data sets required for learning a Bayesian network from
observational data is therefore one of the key issues when assessing
the feasibility of this method for our domain. As this question cannot
be answered on theoretical grounds, we have addressed it with an
extensive series of simulations, before applying the method to data
obtained in real fMRI experiments.

A second question, specific to our context, pertains to the results of
learning Bayesian networks when supplied with observational data
collected from different experimental tasks. Although brain regions
are generally assumed to exhibit a very specific functionality, their
role in functional brain networks might differ across experimental
paradigms and interdependencies between brain regions might vary
accordingly. It is thus of great interest to investigate whether Bayesian
networks can be extracted from meta-analysis data representing
several experimental tasks. We addressed this question in a second
set of simulations, investigating network learning from observational
data that represent a ‘mixture’ of partially overlapping Bayesian
networks.

In the following we will provide the theoretical background of our
work, introducing Bayesian networks and the principle of structure
learning. We will then present the results of our simulations. Finally,
we will demonstrate the application of the method in a coordinate-
based meta-analysis of a large cohort of fMRI studies automatically
extracted from a neuroimaging database BrainMap (Fox and Lan-
caster, 2002; Laird et al., 2005b).

Methods

In this section we only introduce the basic principles of Bayesian
networks and structure learning that are essential for the under-
standing of the paper. More comprehensive introductions are
provided, for example, by Pearl (2000), Jensen (2001), and Bishop
(2006).

Bayesian networks

Bayesian networks are probabilistic graphical models representing
a set of random variables and their probabilistic interdependencies.
More formally, a Bayesian network is a directed acyclic graph (DAG) G
that comprises

• a set of nodes or vertices V in a one-to-one correspondence with a
set of random variables X={Xv:v∈V}

• a set of directed links or edges connecting these nodes.

Each variable Xi is assigned a conditional probability distribution P
(xi|Pa(Xi)), where Pa(Xi) denotes the set of parents of Xi. A variable Xj

is said to be a parent of Xi in G if there is a direct link pointing from Xj

to Xi. If Xi has no parents, then this probability distribution reduces to
the unconditional probability distribution P(Xi). In case of discrete
random variables, the conditional probability distributions are
typically represented in a conditional probability table (CPT). A
Bayesian network then represents the joint probability distribution

P x1; N ; xkð Þ =
Yk

i=1

P xi jPa Xið Þð Þ:

Consider for example the network in Fig. 1, representing the joint
probability distribution of four random variables X1, …, X4. Here, the
probability distributions of X1 and X2 are unconditional, given that
these two nodes do not have any parents. The probability distribution
of X3 is conditioned on its parents X1 and X2, and the probability
distribution of X4 is conditioned on X2. Applying the product rule of
probability, the joint probability distribution of all four variables
represented in this network can be written as

P x1; x2; x3; x4ð Þ = P x1ð ÞP x2ð ÞP x3 jx1; x2ð ÞP x4 jx2ð Þ:

Thus, a Bayesian network represents a particular factorization of
the joint probability distribution of a set of random variables.

Learning the structure of Bayesian networks

With our method we wish to identify interdependencies between
functional regions given information about their common activation
across experiments. This problem amounts to learning the structure of
a Bayesian network, i.e., its underlying DAG, where the nodes
represent the functional regions of interest and links encode their
statistical interdependencies.

The theory for learning Bayesian networks from observational data
has been described in the literature in great detail. For a discussion
and comparison of the various approaches see, for example, Verma
and Pearl (1990), Chickering et al. (1995), Buntine (1996), Krause

Fig. 1. A simple Bayesian network representing four variables.
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(1998), Pearl (2000), Spirtes et al. (2000), Friedman and Koller
(2003), Steyvers et al. (2003), Acid and de Campos (2003), Acid et al.
(2004), and Chen et al. (2006).

In our implementation we used a so-called search-and-score
method for network learning. In these methods a scoring function is
used to describe the fit of the network to the observed data, and a
particular search heuristic is employed to find networks with a high
score.We employed the Bayesian score (Cooper and Herskovits, 1992;
Heckerman et al., 1995; Chickering et al., 1995) which evaluates the
log posterior probability of a network structure G with parameters Θ,
given observational data D. According to Bayes' rule, this is

log P GjDð Þ = log P D jGð Þ + log P Gð Þ + c

where c is a constant independent of the network structure, and log P
(D|G) is the log marginal likelihood, averaging the probability of the
data over all possible parameters of G. Specifically,

P D jGð Þ =
Z

P D jΘ;Gð Þ P Θ jGð Þ dΘ

Note that including P(D|G) into the scoring function has the effect
of penalizing structures with too many parameters, leading the
algorithm to choose the most parsimonious model that fits the data.

As search heuristic, we employed the Metropolis-Hastings (MH)
algorithm (Metropolis et al., 1953; Hastings, 1970) to search the space
of all possible network structures.1 In this approach, a new sample
structure Gt+1 is uniformly sampled from a proposal density which
contains the neighborhood of the current sample structure Gt. This
neighborhood is defined as the set of all structures that differ from Gt

by a single edge deletion, addition, or reversal. Thus, by administering
small changes to an already examined graph structure, new candidate
structures are derived and scored according to the available data.

The problem of network equivalence

Learning the structure of a Bayesian network is limited by a
property of Bayesian networks referred to as Markov equivalence.
Consider, for example, the two networks given in Fig. 2. The
probability distribution P(x1, x2, x3) factorizes according to the left
graph as

P x1; x2; x3ð Þ = P x1ð ÞP x3 jx1ð ÞP x2 jx3ð Þ: ð1Þ

Repeatedly applying Bayes' rule, this factorization can be
transformed:

P x1ð ÞP x3 jx1ð ÞP x2 jx3ð Þ = P x1ð Þ P x1 jx3ð ÞP x3ð Þ
P x1ð Þ P x2 jx3ð Þ

= P x1 jx3ð ÞP x3ð ÞP x2 jx3ð Þ

= P x1 jx3ð ÞP x3ð Þ P x3 jx2ð ÞP x2ð Þ
P x3ð Þ

= P x2ð ÞP x3 jx2ð ÞP x1 jx3ð Þ;

which is the factorization according to the right graph in Fig. 2. Thus,
both networks are consistent with the same joint probability
distribution and, in other words, determine the same statistical
model (Andersson et al., 1997). They are said to fall within the same
Markov equivalence class. This is problematic for learning Bayesian
networks from observational data, as without further knowledge, two
networks modeling the same joint probability distribution cannot be
distinguished on the grounds of observing this joint probability
distribution alone. Differentiating between such networks would

require either some prior knowledge, prohibiting certain directions in
the graph, or the application of external interventions which would
allow us to probe the network in order to test specific hypotheses
about the structure (Steyvers et al., 2003).

Given the nature of our data, such external intervention is not
possible and prior knowledge might often not be available. Thus, if we
set out to infer directed interdependencies between cortical regions
from observational data alone, what we can safely determine is a
partially directed acyclic graph representing a Markov equivalence
class of Bayesian networks. Specifically, in the absence of additional
prior information, a particular graph resulting from structure-learning
needs to be converted into its corresponding Markov equivalence
class, in order to rule out erroneous over-interpretation of some
directed interdependencies between regions. Only directed connec-
tions surviving this conversion can be interpreted as directed
statistical dependencies between cortical regions that are truly
reflected in the training data.

A Markov equivalence class can be represented by a completed
partially directed acyclic graph (CPDAG). In a CPDAG, all links that can
be reversed without changing the equivalence class of the graph are
represented as undirected links. Note that an entirely undirected
graph that results from ignoring the directionality in some directed
graph G is referred to as skeleton of G.

The method for converting a DAG into its corresponding CPDAG
that we employed in our implementation is described in detail by
Chickering (2002).

Data preprocessing

The presented method for learning the structure of Bayesian
networks requires as input a data set capturing the common
occurrences of the events that are represented by the network
nodes. For example, if we wish to learn a Bayesian network
representing the statistical dependencies between cloudy weather,
rain, and low air pressure, we will have to record for a number of time
points or days, whether or not it was cloudy, and/or rainy, and
whether or not this was accompanied by low air pressure.

In the context of fMRI meta-analyses, our input data set should
contain information about whether or not, in a set of fMRI
experiments, the brain regions of interest were found jointly
activated. This requires the definition of such brain regions and the
collection of information regarding their co-activation across experi-
ments prior to network learning.

Different sources for obtaining the required information are
conceivable. In some cases, regions of interest might be pre-defined
by the research question addressed, and co-activation of these brain
regions might already be discussed in the literature. However, we
might also face situations where we want to investigate one or more
particular cognitive tasks without specific prior knowledge about all
brain regions involved and their typical activation patterns. This
would require some additional preprocessing steps transforming
what data are available into co-activation patterns of functional
regions.

A number of meta-analysis techniques are available to perform
this data transformation. The most commonly used data available
for meta-analyses are lists of activation coordinates collected from

Fig. 2. Two Markov-equivalent networks describing interdependencies between three
variables.

1 Note that the naïve approach of enumerating and scoring all possible network
structures is only computationally feasible for networks of three or four nodes at most.
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a number of fMRI experiments. From such coordinate lists,
functional brain regions can be modelled using variants of kernel
density estimation for fMRI meta-analysis data, such as activation
likelihood estimation (ALE) (Turkeltaub et al., 2002; Chein et al.,
2002; Laird et al., 2005a), kernel density analysis (KDA) (Wager et
al., 2004) or multilevel KDA (Wager et al., 2007). Where necessary,
activation coordinates falling within the resulting regions can be
further sub-clustered, e.g., by model-based clustering (Fraley and
Raftery, 1998, 2002; Neumann et al., 2008), to gain a finer-grained
segregation of functional brain regions. From a set of functional
regions, a subset of the most frequently activated and hence most
‘important’ regions can be automatically determined using, for
example, replicator dynamics (Schuster and Sigmund, 1983;
Lohmann and Bohn, 2002; Neumann et al., 2005) or fractional
similarity network analysis (FSNA) (Lancaster et al., 2005). Finally,
a co-activation matrix can be formed for a set of functional regions
by simply counting the number of pairwise activations of these
regions across the investigated experiments.

Computational issues

In recent years, Bayesian networks have received great interest in a
wide range of research areas such as machine learning, logic, and
engineering. Thus, a wealth of academic as well as commercial
software tools is available for the implementation of the described
methods. Our particular structure-learning approach was implemen-
ted in Matlab making use of the open-source Matlab package Bayes
Net Toolbox (Murphy, 2001). The package contains routines for
different network scoring functions, search strategies, data sampling,
and network transformations. As mentioned above, in all simulations
and real-world applications further described, we used the Metrop-
olis–Hastings algorithm for network search, the Bayesian score as
scoring function, and the method proposed by Chickering (2002) for
the conversion of DAGs into CPDAGs as the three building blocks of
Bayesian network learning. Computation times for all experiments
were in the range of seconds or minutes on a standard Linux
workstation, depending on the size of the training data set and the
number of nodes in the DAG.

Simulations

Prior to the application of the method to real-world data, we
performed a set of simulations to assess the feasibility of the approach
for the application to functional meta-analysis imaging data. We first
focused on the number of data sets that is sufficient for learning the
structure of a Bayesian network from observational data. Data sets for
simulations were generated as follows: For a particular number of
nodes, a network was randomly chosen from all possible Bayesian
networks. Data sets of different sizes were sampled from this network,
and the CPDAG corresponding to the chosen network was deter-
mined. The sampled data sets then served as input data to the
structure-learning algorithm. This way, we could assess whether or
not the CPDAG corresponding to the original network could be fully or
partially recovered by the network-learning process. Test–retest
reliability of structure learning was assessed by repeated application
to newly sampled data sets.

Small networks

Three Bayesian networks with 3, 4, and 5 nodes were randomly
generated and data sets containing between 50 and 5000 observa-
tions were sampled from them. The CPDAGs of the randomly
generated networks are shown in Fig. 3.

Although structure learning for Bayesian networks is a well-
researched field, no general theoretical statement can be made about
the size of the training data set required for a structure-learning

algorithm to return a network of acceptable quality. One reason for this
is that successful recovery of a network structure not only depends on
the amount of available data, it is also crucially depended on the
specific joint probability distribution underlying the network. In
general, for networks encoding strong dependencies between random
variables, structure learning up to the correct equivalence class should
be straightforward, as such strong dependencies already become
obvious from observing relatively few data sets. However, as the
relationships between variables become more stochastic, i.e., less
predictable from observational data, more training data will be
necessary.

In our simulation we accounted for this fact by sampling the
entries in the conditional probability tables for each network node
with k parents from a Dirichlet distribution with parameter vector
{α1,…,α2

k} where α1 = α2 =…α2
k = α. Specifically, for all random

variables Xi represented in a network, P(xi|Pa(Xi))∼Dir(α) where α N
1 encourages ‘weak’ or more random dependencies between the
variables and α ≤ 1 leads to CPTs encoding ‘strong’ or more
deterministic dependencies. For illustration, the CPTs of the randomly
generated network consisting of three nodes X1, X2, and X3 with more
stochastic (α=2) and the more deterministic (α=07) dependencies
are presented in Table 1.

For each size of the data set, sampling and structure learning was
repeated 100 times. Test–retest reliability of the structure recovery is
presented in Fig. 4a, where the number of correctly discovered
CPDAGs is plotted against the size of the observational data set for
networks with ‘stronger’ and ‘weaker’ dependencies between nodes.
As expected, successful and reliable structure recovery required

Fig. 3. Equivalence classes (CPDAGs) of three randomly generated small Bayesian
networks.

Table 1
Randomly generated CPTs encoding more deterministic (left) and more stochastic
(right) dependencies between three nodes in a Bayesian networks.

α=0.7 α=2

P(X3) True False P(X3) True False

0.92 0.08 0.56 0.44
P(X1|X3)
True 0.85 0.15 0.75 0.25
False 0.12 0.88 0.30 0.70

P(X2|X3)
True 0.05 0.95 0.82 0.18
False 0.94 0.06 0.55 0.45

Entries in the table were sampled from a Dirichlet distribution with parameter α=0.7
and α=2, respectively.
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considerably more data for networks with more stochastic depen-
dencies (Fig. 4a, bottom) than for networks with more deterministic
dependencies (top).

Somewhat surprisingly, the simulations revealed that even for
small Bayesian networks with three or four nodes, several hundred
data sets are required to fully learn the correct CPDAG from
observational data. Note that in addition to the use of the MH-
algorithm, we performed a full search for the best-fitting network
structure with three and four nodes. For all training data sets, the
number of correctly discovered CPDAGs was identical with results
obtained from the MH-algorithm.

We further analyzed the individual network connections of the
recovered structures. Fig. 4b pictures the number of times each
connection was detected as part of the network structure plotted
against the size of the data sets, again for networks with stronger and
weaker dependencies. Connections belonging to the correct struc-
tures are plotted in red. In the following we consider a connection as
correctly detected part of the topology, if it was part of the recovered
CPDAG inmore than half of the 100 trials, i.e., the relative frequency of
detection was above chance.

In the three-node network with strong dependencies, all connec-
tions were correctly detected even for the smallest data set of 50
observations. In the same network with weaker dependencies,
detecting the connections between nodes 2 to 3 required at least
250 observations.

In the strong network with four nodes, all connections were
correctly recovered from data sets of all sizes, with a single false
positive connection from node 1 to 4 detected from the smallest
data set only. In case of the weak dependencies, the recovery of
correct connections required more data. The connections from node

4 to 1, 2 to 1, and between nodes 3 and 4 required data sets with at
least 150, 350 and 500 observations, respectively. In addition, the
algorithm detected two false positive connections from node 1 to 2
and from node 1 to 4. Although these nodes were connected in the
correct equivalence class, the direction of these connections was
reversed after structure recovery.

In the network with five nodes, two out of five connections were
correctly detected already from the smallest data set with both strong
and weak dependencies between the nodes. These were the
connections between nodes 1 and 3 and between nodes 2 and 4.
The correct recovery of the remaining connections required consid-
erably more data for both networks. However, the edge between node
4 and 5 in the network with weak dependencies was the only
connection that could not be correctly recovered from less than 1000
observations.

Although these results convey a rather variable picture at first,
we can draw two important conclusions. First, with the exception of
one missing link, all connections could be detected with a reliability
above chance from 1000 observations, with the majority of
connections recovered from much smaller data sets. Second, for
all small networks and data sets, no connection was falsely detected
that did not belong to the skeleton of the correct structure. False
positive connections that were detected in some trials were part of
the skeleton of the correct CPDAG but with reversed directionality.
Thus, for small networks, our method is able to detect the correct
skeleton of a Bayesian network and at least some directionality of
relations between the network nodes from data sets as small as 50
observations. This makes the method in principle suitable for the
search of small partially directed functional networks from meta-
analysis imaging data.

Fig. 4. (a) Size of training data sets required for learning a graph structure with up to five nodes. (b) Number of times each network connection was detected out of 100 trials of
structure learning from randomly generated networks with three to five nodes. Connections belonging to the correct CPDAG are plotted in red.
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Larger networks

For randomly generated networks of six or more nodes, overall
performance of the learning algorithm declined even in networks
with strong dependencies. The complete correct equivalence class
could not be detected even with up to 2000 data samples. This is not
entirely surprising given the results from smaller networks and the
super-exponential increase of the number of possible network
structures with growing network size. However, despite this decline
in overall performance, in networks encoding strong relationships
between nodes, a considerable number of directed connections in the
correct CPDAG could still be detected from under 2000 data sets with
very few false positives. Example results for randomly generated
networks with up to 16 nodes are presented in Fig. 5. Red lines again
mark edges that belong to the correct CPDAG.

Like for smaller networks, the vast majority of connections in the
CPDAG were correctly recovered for networks with up to 10 nodes,
though in most cases several hundred observations were required to
do so. A single false positive edge in the networkwith eight nodes was
only wrongly detected for data sets smaller than 1000 observations. In
the 10-node network, two false positive connections were part of the
solution even for larger data sets. Again, these were connections that
belonged to the skeleton of the CPDAG, but their direction was
reversed.

With growing network size, we observed a relative increase in the
number of true connections that were not detected by the algorithm.
Still, the learning algorithm only very rarely produced false positive

answers: 5 out of 132 possible connections for the 12-node network, 3
out of 182 possible connections for the 14-node network, and 5 out of
240 possible connections for the 16-node network. All of these false
positive connections belonged to the skeleton of the network.

In summary, our simulations for both smaller and larger networks
show that essential parts of a Bayesian network can be detected from
a few hundred observational data sets. Moreover, no connection that
did not belong to the skeleton of the original CPDAG was falsely
detected. Thus, even if we cannot expect a structure-learning
algorithm to fully recover a large Bayesian network from sparse
observational data alone, major connections representing strong
relationships between brain areas are still reliably detectable.

Partially overlapping network

In a second set of simulations, we investigated the behavior of the
network-learning algorithm when supplied with data representing a
mixture of different partially overlapping Bayesian networks. This
situation is of particular importance in the context of fMRI meta-
analyses, as the same brain regions might be involved in different
brain networks, depending on the experimental paradigm. With the
following simulations we thus wanted to investigate whether
network learning yields meaningful and interpretable results in
situations where training data come from such different sources. As
will be seen in the following section, we faced such a situation in our
real-world application, taking as input data activation coordinates
obtained in different experimental paradigms.

Fig. 5.Number of times each network connection was detected out of 100 trials of structure learning from randomly generated networks with up to 16 nodes. Connections belonging
to the correct CPDAG are plotted in red.

1377J. Neumann et al. / NeuroImage 49 (2010) 1372–1384



Two pairs of networks of four nodes were generated. They are
shown in the top rows of Figs. 6 and 7, respectively. The networks in
the first pair have two nodes but no connections in common.
Moreover, the union of the two networks yields a valid DAG, depicted
in the bottom row of Fig. 6. Note that for all three graphs the structure
of the DAG and the corresponding CPDAG are identical. Thus, with this
pair of networks we simulate a straightforward situation where data
from two sources are not contradictory and the network structures
could in principle be fully recovered.

The networks in the second pair have three nodes and one
connection in common. However, this common connection between
nodes X1 and X3 is of opposite directionality in the two graphs.
Moreover, the union of the two networks yields a structure that is
not a valid DAG, as it contains a cycle between X1, X2, and X3. Note
further that for the second network (right) the CPDAG differs from
the DAG in that the connection between X1 and X3 is undirected.
The directionality of this connection would therefore not be
detectable by network learning. Thus, we are now facing a more
complex situation where the training data contain contradictory
information, network structures are not fully recoverable due to
Markov equivalences, and the complete mixture of the two graphs
contains loops.

Five datasets of 1000 observations were sampled from each pair
with different mixing proportions. Specifically, in the first data set,
10% of the data points were drawn from the first (left) network, and
90% from the second (right) network. The other four data sets
contained sample points at a ratio of 30:70, 50:50, 70:30 and 90:10
samples from the first and second network, respectively.

For data sets with a very unequal ratio, one would expect the
network-learning algorithm to return the network that is primarily
represented in the input data set. For data sets with more equal
proportion, one would hope for a learning result that, for the first pair
of networks, represents the correct ‘mixed’ graph. For the second pair,
the resulting network should ideally contain all connections from
both graphs that do not contradict each other or violate the validity of
a DAG structure.

As in the previous simulations, network learning was repeated 100
times with newly sampled data sets and a connection was regarded as
successfully detected, if the test–retest reliability of its detection was
above 50%.

For the first pair, learning yielded the expected results. From the
two data sets with a ratio of 70:30 and 90:10, the left DAG was fully
recovered. From the two data sets with a ratio of 30:70 and 10:90, the

right DAG was fully recovered. For the equal ratio, structure learning
resulted in the correct ‘mixed’ graph (Fig. 6, bottom row).

For the second pair, learning performancewas as follows: From the
two data sets with a ratio of 90:10 and 10:90, the CPDAGs
corresponding to the left and right DAG, respectively, were correctly
recovered. Learning from the remaining data sets resulted in a graph
containing the correct connections between X1 and X2, between X4

and X2, and between X2 and X3, that would be expected to be part of a
correct ‘mixture.’ Moreover, a directed connection between X1 and X3

was detected. This result seems plausible, given that the connection
with this directionality is present in the first graph and thus part of all
input data sets, and the reversed directionality could not have been
learned from the second graph due to graph equivalences. Thus, the
algorithm recovered a DAG that comes closest to the true ‘mixture’ of
the graphs but, by omission of a single connection, does not validate
the DAG property of an acyclic structure.

From these simulations we can draw the following conclusions:
Learning the structure of a Bayesian network can yield meaningful
results, even if the input data used for learning are drawn from
different sources. If one source dominates others in the input data set,
the Bayesian network underlying this dominating source will likely be
discovered. If information from different sources is more equally
distributed and not contradictory, the learned structure is likely to
represent this information equally in the learning results. In case of
contradictory information, network learning is likely to result in a
structure containing all non-contradictory information of the different
sources. Most notably, network learning from mixed sources did not
introduce any connections that did not belong to the skeleton of the
expected network or, indeed, return any false positive connection.
Applied to our context, we would thus argue that Bayesian network
learning can be meaningfully employed with data representing
different experimental paradigms, even if the full brain network
underlying this observational data might not always be completely
detectable.

Application to functional imaging data

In order to apply our method to real-world imaging data, fMRI
activation coordinates were extracted from the BrainMap database
(Fox and Lancaster, 2002; Laird et al., 2005b). BrainMap provides
results from published functional neuroimaging experiments as
coordinate-based (x,y,z) activation locations in Talairach space,

Fig. 6. Top: Two Bayesian networks encoding non-contradictory statistical dependen-
cies between four nodes. Bottom: ‘Mixture’ of the two networks.

Fig. 7. Top: Two Bayesian networks encoding partially contradictory statistical
dependencies between four nodes. Bottom: ‘Mixing’ the two networks results in a
graph that does not meet the requirements of a DAG.
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together with detailed information on the experimental setup. This
facilitates the search for pre-defined regions of interest as well as
for specific experimental paradigms, stimulus types, imaging
modalities, etc.

Given the results of our simulations, that is, the need for relatively
large amounts of data for reliable structure learning, we aimed at the
most extensive test data set possible, restricting the database search
initially by imaging modality and experimental paradigm used.
However, no data set representing an individual experimental
paradigm in the database was sufficiently large to match the required
size of a data set for reliable structure learning, as determined by our
simulations. Specifically, the largest amount of data (296 experimen-
tal contrasts including 2475 activation coordinates) was available for
the n-back paradigm. However, the number of data points surviving
the necessary preprocessing steps as described below was not yet
sufficient for the network-learning algorithm to extract a Bayesian
network with a test–retest reliability above chance. We therefore
formed our test data set from a larger pool of data, namely, all
activation coordinates that were obtained by searching the database
for imaging modality ‘fMRI.’ Coordinates that were already results of a
meta-analysis were excluded. This procedure yielded 21,136 activa-
tion coordinates from 2505 individual contrasts published in over 500
peer-reviewed papers.

Data preprocessing

As stated above, if only lists of activation coordinates are
available, these lists need to be transformed into data sets
representing the co-activation of brain regions. In the following
we describe the particular methods used in our application. All
preprocessing steps were implemented in C as part of the image
analysis software Lipsia (Lohmann et al., 2001) with additional use
of the software package MCLUST for model-based clustering (Fraley
and Raftery, 1999, 2003). As previously mentioned, it is important
to note that network learning does not intrinsically depend on these
particular preprocessing steps and some of the following methods
could be easily replaced by alternative approaches. Moreover, as a
complete description of the applied techniques is beyond the scope
of this paper, we will only illustrate the main principles of our
preprocessing methods together with the results of their applica-
tion. For a more comprehensive description we would like to refer
the reader to the provided literature.

Activation coordinates were transformed into functional regions
by a sequence of meta-analysis processing steps consisting of
activation likelihood estimation (ALE) (Turkeltaub et al., 2002;
Chein et al., 2002; Laird et al., 2005a), model-based clustering (Fraley
and Raftery, 1998, 2002; Neumann et al., 2008) and replicator
dynamics (Schuster and Sigmund, 1983; Lohmann and Bohn, 2002;
Neumann et al., 2005). Aim of this preprocessing sequence was the
extraction of functional regions which form a potential network of
manageable and interpretable size, and yet contain sufficient
information about their co-activation to enter the structure-learning
algorithm.

ALE
In ALE, activation coordinates are first modeled by three-

dimensional Gaussian probability distributions centered at their
Talairach coordinates. Specifically, the probability that a given
activation maximum lies within a particular voxel is

p =
1

2πð Þ3=2σ3 exp
−d2

2σ2

" #
; ð2Þ

where σ is the standard deviation of the distribution and d is the
Euclidean distance of the voxel to the activation maximum. For each

voxel, the union of these probabilities calculated for all activation
coordinates yields the ALE value. In regions with a relatively high
density of reported activation coordinates, voxels will be assigned a
high ALE value in contrast to regions where few and widely spaced
activation coordinates have been reported.

From the resulting ALE maps, one can infer whether activation
coordinates reported from different experiments are likely to
represent the same functional activation. A non-parametric permu-
tation test is utilized to test against the null hypothesis that the
activation coordinates are spread uniformly throughout the brain.
Given some desired level of significance σ, ALE maps are thresholded
at the 100(1 − α)th percentile of the null distribution. Topologically
connected voxels with significant ALE values are then considered
activated functional regions.

In our application ALE maps were thresholded at α=0.0001. This
α-level was already suggested in the original ALE work (Turkeltaub et
al., 2002) and later shown to correspond to the application of FDR-
corrected thresholding at p=0.05 (Laird et al., 2005a).

In contrast to most previous meta-analyses, we chose a relatively
small standard deviation (σ=3 mm) of the Gaussian, as it was
previously observed that for very large numbers of activation
coordinates, a small standard deviation is necessary to achieve the
desired noise reduction and to reduce the list of activation coordinates
to a number feasible for further processing (Neumann et al., 2008).
Using the typically employed width of 10 mm FWHM in the present
data set would in fact result in a single continuous ALE region covering
almost the entire brain.

Applying ALE with σ=3 mm and α=0.0001 resulted in 13 ALE
regions containing 4769 of the original activation coordinates spread
across different parts of the brain. Results are exemplified in Fig. 8.
Despite the small standard deviation of the Gaussian, most of the
detected ALE regions were clearly too large to represent only a single
functional region. The largest region had a volume of 76,545 mm3 and
spanned almost the entire left lateral cortex. For a meaningful
application of the network-learning algorithm, the ALE regions thus
needed further sub-clustering, which was realized by means of
model-based clustering.

Model-based clustering
Model-based clustering builds on the idea that clusters of points in

three-dimensional space can be represented by a mixture of three-
dimensional Gaussian probability distributions. In the context of
neuroimaging meta-analyses, these points are activation coordinates
in Talairach space. A mixture of Gaussians can thus be fitted to
activation coordinates falling within the same ALE region in order to
find a sub-clustering that best represents the spatial distribution of
these coordinates. Fitting is performed by expectation maximization
(EM) (Dempster et al., 1977), and the best fittingmodel is determined
by means of the Bayesian information criterion (BIC) (Fraley and
Raftery, 2002). Mathematical details of the method and its application
in neuroimaging meta-analyses are provided by Fraley and Raftery
(2002) and Neumann et al. (2008).

We applied the method to all 4769 activation coordinates that
survived ALE, using 10 different model parameterizations and up to
50 possible clusters. The best model resulted in a sub-clustering of the
ALE regions into 49 functional regions. However, since a partially
directed networkwith 49 nodes would hardly be interpretable and, as
our simulations suggested, structure-learning performance gradually
declines with growing network size, we needed to further reduce the
number of functional regions entering the learning algorithm. Thus,
the final step of data preprocessing in our application was the
selection of functional regions that should constitute the nodes of our
network structures.

Recall that structure learning is based on the analysis of co-
activation patterns. We would thus expect regions that are most
frequently co-activated across the included experiments to provide
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the most informative data for the network-learning algorithm. Such
regions can be found as follows. From the coordinates falling within
the 49 regions obtained, a co-occurrence matrix can be formed,
recording for each pair of regions the number of co-occurrences across
the individual experiments. This matrix can then be subjected to a
replicator process.

Replicator dynamics
Based on the principles of natural selection, a replicator process

determines a so-called dominant network or group of regions with
the property that every region included in the group co-occurs more
often with every other group member than with non-members. Using
this mechanism we can select the most frequently co-occurring

functional regions from our imaging data, providing the most
informative data set to enter the structure-learning mechanism.
Details on replicator dynamics and its application to fMRI single-
subject data and in meta-analyses are provided by Schuster and
Sigmund (1983), Lohmann and Bohn (2002), Neumann et al. (2005),
and Neumann et al. (2006).

Fig. 9 shows all coordinates falling within the most frequently co-
occurring functional regions. These regions were determined by
three consecutive applications of the replicator process to the co-
occurrence matrix. Coordinates falling within the same region are
displayed in the same color. The regions include part of the
posterior medial frontal cortex (PMFC) primarily covering supple-
mentary and presupplementary motor areas, anterior cingulate

Fig. 8. Axial and sagittal views exemplifying the result from ALE as first meta-analysis processing step.

Fig. 9. Axial and sagittal views of the 13 most often co-occurring regions determined by the replicator process, plus right cerebellum. Slices correspond to those presented in Fig. 8.
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cortex (ACC), posterior parts of the lateral prefrontal cortex (LPFC)
bilaterally, dorsal premotor cortex (PMC) bilaterally, left and right
anterior insula (Ins) and thalamus (Thal), left and right anterior
intraparietal sulcus (IPS), in the right hemisphere extending into
precuneus, and the left cerebellum (Cer). For reasons of symmetry
we additionally included the right cerebellum into the subsequent
network learning. Note that determining these regions was a fully
automatic process applied to data which were not pre-selected
according to any specific experimental paradigm. It is thus not
surprising that anatomical localization is somewhat blurred and
some regions extend into neighboring areas.

In the first application, the replicator process identified a fronto-
parietal network consisting of ACC, left and right LPFC, left anterior
insula, and left IPS, regions that are regularly found in the
investigation of cognitive control tasks such as Stroop or task
switching and decision making paradigms (Vincent et al., 2008;
Koechlin et al., 2003; Ridderinkhof et al., 2004; Forstmann et al., 2005;
Zysset et al., 2001; Zysset et al., 2006; Derrfuss et al., 2005). The
second replicator network primarily contained areas related to motor
tasks: PMFC, left and right dPMC, left cerebellum. Additionally, the
network contained right anterior insula and right IPS. The left and
right thalamus formed the third network.

Bayesian network learning

Building on the results of the replicator process, four groups of
different sizes were formed to enter the learning algorithm. Group 1,
the smallest group, contained the four motor-related regions
identified by the replicator process. As a 5th region the right
cerebellum was added. Group 2 was formed based on the fronto-
parietal network determined by the replicator process and consisted
of ACC, left and right LPFC, left and right insula and left and right IPS. In
group 3 all cortical regions from the first two groups were combined
to form a network of 10 nodes. Finally, all 14 regions were combined
to form group 4. For each group the data set was assembled containing
all co-activation patterns of the group members from the individual
experiments. Note that only patterns containing at least two of the
group members were included in the training sets. This leads to data
sets of 218, 377, 524, and 633 examples for groups 1 to 4, respectively.
In 100 trials, 196, 339, 471, and 569 samples, corresponding to 90% of
the total sample size, were randomly selected from each group,
respectively, to form the training set. This way training conditions
were comparable to those of the simulated data, with several hundred
observations in each data set and 100 trials for each group to assess
the reliability of the learning results.

Given our simulation results, we expected the structure-learning
algorithm to perform with a high test–retest reliability at least for the

two smallest networks. We again regarded a connection as success-
fully detected if the test–retest reliability of its detection was above
50%. If not stated otherwise, connections with a detection reliability of
50% or higher are included in the graphs presented in the Figs. 10–12.

Learning the structure of the smallest motor-related network
yielded a tightly and strongly connected graph in the majority of the
100 trials. The network structure is presented in Fig. 10. Specifically, 6
out of 10 possible connections were detected with a reliability
between 64% and 87%, with themost reliable detection rate of 84% and
87% for the directed connections between pMFC and left and right
cerebellum, respectively. This high performance of the structure-
learning algorithm is not entirely surprising, given that the members
of the graph had been identified by the replicator process as
frequently co-activated as an entire group. In fact, in about one
quarter of all experiments included in the data set for group 1, at least
three of the five regions were found co-activated. This data set can
thus be expected to encode strong statistical dependencies between
the individual nodes which, according to our simulations, can be
reliably detected from data sets of even less than 100 observations.
Note that the directionality between rdPMC and cerebellum bilater-
ally could not be determined due to graph equivalence.

Results for learning the structure of graph 2 and 3 are presented in
Figs. 11 and 12, respectively. Both graphs primarily contained
functional regions frequently found activated by cognitive control
processes. As in our simulations, network-learning performance
declined with network size, despite an increase in the number of

Fig. 10. Most reliably detected connections in the CPDAG of cortical areas determined
from data set 1.

Fig. 11. Most reliably detected connections in the CPDAG of cortical areas determined
from data set 2.

Fig. 12. Most reliably detected connections in the CPDAG of cortical areas determined
from data set 3. Connections that were detected in 50%, 35%, and 25% of all trials are
plotted in bold, medium, and thin lines, respectively.
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observations. In the second graph, 6 out of 21 possible connections
were detected with a reliability of more than 50% (maximum 68%).
These include directed connections between left and right LPFC and
right and left insula, respectively, connections between left and right
insula and right and left IPS, respectively, whereby directionality
between lIns and rIPS could not be determined, and a directed
connection between left and right IPS. Interestingly, the ACC was not
part of the learned topology, although it was activated in 37% of all
experiments included in data set 2. In contrast, left and right IPS were
only activated in 26% and 19% of all experiments, respectively.
However, the network-learning algorithm determined the statistical
dependencies between these regions as well as their interdependen-
cies with other network members. This nicely demonstrates that
results of structure learning do not merely reflect activation
frequencies but functional dependencies arising from co-activation
of functional regions. Note that the strongest possible dependency on
the ACC in the network was detected for the left IPS, but only with a
reliability of 40% (dashed line in Fig. 11).

Only very few interdependencies could be detected in group 3
with a test–retest reliability of 50% or higher. These dependencies
include the connections between rIPS and lIns (64%), between rIPS
and lIPS (59%), and between rIPS and lLPFC (60%). Reassuringly, these
connections were also included in the graph learned from group 2,
although directionality could no longer be determined in the larger
network due to network equivalences. Fig. 12 presents a graph
containing all connections detected from group 3 with a test–retest
reliability of at least 25%. Connections that were detected in 50%, 35%,
and 25% of all trials are plotted in bold, medium, and thin lines,
respectively. Note that the right LPFC was not included in the graph
even for an acceptance threshold of 25% reliability. Its strongest
dependency was determined in relation to the left insula (dashed line
in Fig. 12); however, this connection was part of the learned topology
in only 20% of all trials.

Reliability of structure learning further declined for the largest
network. Only two connections could be detected with a reliability
above chance: between rLPFC and pMFC and between rIPS and rCer.
While these connections do not contradict any findings in the smaller
networks, reliability of detection was as low as 54% and 51%,
respectively. In contrast to our simulations, where for a network
with 14 nodes, a subset of connections could still be detected with a
reliability of well above 70%, this was not possible in our real-world
application.

Discussion

In a series of simulations and a real-world application, we have
demonstrated that structure learning for Bayesian networks can be
used to infer partially directed functional networks from fMRI meta-
analysis data. For small numbers of functional regions, directed and
undirected statistical interdependencies can be reliably detected from
a few tens or hundreds of observations. In larger networks, at least a
subset of expected interdependencies is reliably detectable given
sufficient amounts of data.

Our method has a number of advantages over existing network
analysis techniques. Most importantly, Bayesian network learning is
exploratory in nature. This is in contrast to network analysis
techniques commonly applied on the level of individual subject
data. These methods, including SEM and DCM, rely on a confirmatory
approach. That is, the structure of a connectivity model is not inferred
from the data, but proposed a priori and subsequently tested against
the available data. This facilitates the incorporation of prior knowl-
edge, for example, about existing anatomical connections, into the
connectivity model. However, the number of possible networks grows
super-exponentially with the number of nodes. For example, the
number of network models capturing all possible connectivity
patterns between five brain regions already exceeds 1 million. The

application of confirmatory methods thus requires very strong
hypotheses about probable connectivity patterns between brain
regions, in order to rule out the vast majority of all theoretically
possible network configurations and test the remaining ones against
the available data.

We wish to point out, however, that in our real-world example,
one non-exploratory step was introduced in the presented processing
chain bymanually grouping brain regions into groups that defined the
search space for the network-learning algorithm. While this was done
for demonstration purposes, as it allowed us to investigate learning of
differently sized networks, this manual step can of course be omitted
in other applications, rendering the entire processing chain purely
data-driven.

Secondly, our method captures the directionality in the association
between functional regions by way of conditional dependencies, a
well-defined statistical concept. This goes beyond earlier meta-
analysis techniques which so far resulted in network structures only
capturing undirected, though multivariate, co-activation patterns.

It is important to be clear that conditional dependencies between
regions do not encode connectivity in the sense of directed
information flow via direct or indirect anatomical links, or in the
sense of temporal precedence of activation. Whether or not we can
gain such information from fMRI measurements alone is still subject
of a heated debate, given for example the low temporal resolution of
fMRI time series and the complex and still not fully understood
coupling between the obtained measurements and the underlying
neural activity. However, even if such information is not attainable,
from the results of our method we can derive important conclusions.
For example, in a Bayesian network learned with our approach a
directed link from node A to node B represents a statistical
dependency such that activation of node B statistically depends on
activation of node A. It is thus more likely that activation of region A
has a direct or indirect effect on activation of region B in the
investigated experimental setups than vice versa.

Further, it is important to note that directionality in a Bayesian
network does not imply causal relationships. In fact, causal relation-
ships in general cannot be inferred from observational data alone. This
requires the application of external intervention (Pearl, 2000), a fact
that holds true for all directed network models. One conceivable
intervention in the context of functional imaging is the application of
transcranial magnetic stimulation (TMS) which transiently alters the
neuronal behavior in the stimulated circuitry. An example of this
approach was recently presented by Laird et al. (2008), applying
structural equation modelling to PET data acquired during TMS.
Lesions in patient data could also be viewed as a form of external
intervention, though this would not be controlled by the
experimenter.

Recently, Zheng and Rajapakse (2006) employed structure
learning for Bayesian networks to extract directed connectivities
from single-subject data. The method is comparable to ours except for
the nature of the input data, fMRI time series averaged across voxels in
pre-defined regions of interest. Using fMRI time series as observa-
tional data circumvents the problem of data sparsity, but conclusions
drawn from such analyses are only supported by a single or a small
number of subjects and are specific to the employed experimental
paradigm and setup. Zheng and Rajapakse (2006) present applica-
tions of themethod in the domains of natural language processing and
cognitive control. Surprisingly though, the authors do not address the
question of Markov equivalence, and the structure of their exempli-
fied graphs suggest the existence of further graphs that fall within the
same Markov equivalence classes. The extensive graphs presented in
the example analyses might thus be over-specific in some of the
directed connections they contain.

Our simulations suggest that a considerable number of dependen-
cies between regions can be reliably learned even for networks with
more than 10 nodes. However, for real meta-analysis data, learning
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larger networks resulted in relatively few connections and reduced
reliability. This apparent discrepancy was most likely caused by two
factors. Firstly, the number of observations was comparatively low in
the real-world data sets: 471 and 569 observations were available in
our meta-analysis data sets for networks of 10 and 14 nodes.
However, for a large proportion of connections determined in
simulated networks of comparable size, reliability increased to a
satisfactory level only with data sets of 1000 observations or more.
Secondly, in our simulations training data for larger networks were
sampled from networks encoding strong statistical dependencies
between the nodes. In contrast, training data sets derived in our fMRI
meta-analysis are more likely to only weakly capture the statistical
dependencies between the individual regions. This is due to the broad
and unconstrained selection of training data. While statistical
dependencies between functional regions are most certainly different
across different experimental paradigms, we included data from all
experimental paradigms available in the database. This approach
yields reasonably large data sets, yet it comes at a cost of less specific
information captured in the training data. While our simulations
provided reassuring results for Bayesian network learning from data
of different origin, we would still expect the reliability of the learning
to further improve when applied to data sets of comparable size but
encoding a single or very closely related experimental paradigms and
hence containing more specific information. At the time of writing, no
experimental paradigm encoded in the database provided enough
data points to allow for such learning with sufficient reliability.
However, with the exponentially growing number of imaging studies
published each year, this will be possible in the very near future.

In agreement with others, we regard the possibility to apply
functional image analysis techniques simultaneously to several
experimental paradigms as one of the major strength of meta-
analyses (Costafreda, 2009; Robinson et al., in press; Derrfuss and
Mar, 2009; Smith et al., 2009). This way, research questions can be
addressed that cannot be answered on the grounds of isolated
imaging experiments alone. For example, Derrfuss et al. (2005)
applied meta-analyses to directly compare activation patterns across
tasks. Toro et al. (2008) and Robinson et al. (in press) developed new
meta-analysis techniques for the detection of task-independent co-
activation patterns for anatomically defined regions of interest. Most
recently, Smith et al. (2009) applied independent component analysis
to meta-analysis data in order “…to identify the major functional
networks in the brain as estimated, and hence representative of, a
significant proportion of all functional activation studies carried out to
date.” Thus, such meta-analysis techniques, including ours, might
provide a further step in the identification of the general principles of
brain processing.

It is important to note that network learning in general is
dependent on some starting assumptions, most notably the selection
of regions entering the network-learning process. Just like in
confirmatory approaches where networks can only contain regions
that are present in the a priori hypotheses, network learning in our
approach can only assess interdependencies between regions that are
represented in the input data. In both confirmatory and exploratory
approaches, leaving out pivotal brain areas will lead to spurious or
oversimplified results. For demonstration purposes, we chose a fully
automated meta-analysis processing chain as means to select our
input regions. While this approach includes large amounts of data and
is not biased by human subjectivity, it is relatively uninformed and
does not allow for the inclusion of specific regions of interest.
Nevertheless, despite its “blindness,” the procedure selected and
grouped together a highly plausible set of regions that are frequently
found activated in motor-related and cognitive control tasks, tasks
that make up large parts of the database the data were extracted from.
Other selection strategies are conceivable based on prior knowledge
derived from individual imaging experiments, anatomical knowledge
or alternative meta-analysis techniques. For example, the method for

the derivation of co-activations from meta-analysis data proposed by
Toro et al. (2008) is comparable to our selection strategy, but
additionally facilitates the search of co-activations between specific
seed regions. In any case, well informed pre-selection strategies will
prove essential for extracting neuro-anatomically realistic networks.

Finally, we wish to point out a number of current limitations of our
method that will be subject of future research. Firstly, Bayesian
networks encode partially directed statistical dependencies and thus,
by definition, can only have acyclic topologies. Functional loops
present in the brain will therefore not be detectable with our method.
An alternative approach was recently presented by Storkey et al.
(2007) who proposed to learn structural equation models including
loops from fMRI time series. Other approaches such as the use of chain
graphs that facilitate directed acyclic together with undirected cyclic
structures are conceivable. However, learning these or even more
complex graphical models requires considerable more sample points
for the learning algorithm (Storkey et al., 2007; Ma et al., 2008) and is
thus, at present, not applicable to meta-analysis data.

A second limitation of structure learning pertains to the inability to
distinguish between graphs falling within the same Markov equiva-
lence class. This means that, typically, the directionality of some
connections in the learned graph cannot be resolved. Structure
learning alone might thus not be sufficient to infer a full connectivity
model from functional imaging data. Our future research will
therefore be directed towards approaches that inform network
learning about interdependencies that can be ruled out or defined,
for example, on anatomical grounds, thus reducing the number of
graphs within the same Markov equivalence class.

Conclusions

We have presented a new method for the detection of inter-
dependencies between brain regions from functional imaging data. To
our best knowledge, this is the first method on the meta-analysis level
that provides information about the directionality of possible
relationships between regions, drawing on the concepts of conditional
probability distributions and structure learning in Bayesian networks.
Our method thus represents a useful exploratory data analysis tool
complementing existing approaches to the meta-analysis of function-
al imaging data.
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