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The aims of this study were to present a method for developing a path analytic network model
using data acquired from positron emission tomography. Regions of interest within the human
brain were identified through quantitative activation likelihood estimation meta-analysis. Using
this information, a “true” or population path model was then developed using Bayesian structural
equation modeling. To evaluate the impact of sample size on parameter estimation bias, proportion
of parameter replication coverage, and statistical power, a 2 group (clinical/control) ! 6 (sample
size: N D 10, N D 15, N D 20, N D 25, N D 50, N D 100) Markov chain Monte Carlo
study was conducted. Results indicate that using a sample size of less than N D 15 per group will
produce parameter estimates exhibiting bias greater than 5% and statistical power below .80.

Neuroscientists in the field of human functional brain mapping use imaging modalities such
as positron emission tomography (PET), transcranial magnetic stimulation (TMS), and func-
tional magnetic resonance imaging (fMRI) to indirectly detect neural activity simultaneously
occurring in various regions across the entire brain through metabolic and blood-oxygenation
measures. The neural activity occurring within these anatomical regions of interest (ROIs) and
their associated causal pathways provide a framework for modeling the covariance structure
within the collective system. During data acquisition, the brain is repeatedly imaged while
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148 PRICE ET AL.

the individual is presented with stimuli or required to perform a task. Spatial variations in
signal intensity across the acquired neuroimages reflect differences in brain activity during
the presented stimuli or task performance. Statistical analysis of this functional neuroimaging
data attempts to establish relationships between the location of activated brain regions and the
particular aspect of cognition, perception, or other type of brain functioning being manipulated
by the task or stimuli. Generally, this process proceeds by transformation of the data into matrix
format with subsequent analyses conducted according to the general linear model (Friston,
Holmes, et al., 1995; Holmes, Poline, & Friston, 1997).

Establishing these function–location relationships and uncovering areas of functional dis-
sociation within the cortex has been a primary focus of research, but more investigators
are progressing from simple identification of network nodes toward studying the interactions
between brain regions. The aim is to understand how sets and subsets of networks function as a
whole with the intent of accomplishing specific cognitive goals. Previous studies have analyzed
both correlational and covariance structures between brain regions, and techniques for applying
structural equation modeling (SEM) to neuroimaging data to investigate connections between
brain regions have been under development since 1991 (McIntosh & Gonzales-Lima, 1991,
1994; McIntosh et al., 1994).

Initial application of SEM techniques to functional neuroimaging data was limited to a hand-
ful of researchers with advanced statistical backgrounds. In recent years, interest in SEM has
increased due to improvements in and accessibility of commercial software and an unavoidable
pressing need for the development of methods to test network models and investigate effective
connectivity between neuroanatomical regions. Previous studies have applied SEM methods
to PET and fMRI data as a means to investigate simple sensory and action processing, such
as vision (McIntosh et al., 1994), audition (Gonçalves, Hall, Johnsrude, & Haggard, 2001),
and motor execution (Zhuang, LaConte, Peltier, Zhang, & Hu, 2005), as well as higher order
cognitive processing, such as working memory (Glabus et al., 2003; Honey et al., 2002),
language (Bullmore et al., 2000), and attention (Kondo, Osaka, & Osaka, 2004), and multiple
sclerosis (Au Duong et al., 2005). The analytic strategies that researchers conducting these
studies have used either posited starting path models a priori based on a single theory alone
and then proceeded in a confirmatory manner or an exclusively Bayesian approach to generate
optimally weighted network models using little or no prior information. Two shortcomings of
these previous studies are that the analytic strategies lack the ability to distinguish from multiple
other equally plausible network models, and they did not consider the impact of sample size and
its effect on statistical power and parameter estimation bias. To address these issues, we present
a two-step approach that uses quantitative activation likelihood estimation (ALE) meta-analysis
(Brown, Ingham, Ingham, Laird, & Fox, 2005; Turkeltaub, Guinevere, Jones, & Zeffiro, 2002)
for identification of ROIs specific to our research problem in combination with Bayesian SEM
to generate a highly informed network model. After model development, we examined issues
that previous SEM-based neuroimaging studies have failed to address: sample size, statistical
power, and parameter estimation bias. Given that the cost of data acquisition in functional
imaging research is very high (e.g., approximately $3,000 per participant), the question of the
requisite sample size necessary to model the neural system in a statistically valid and reliable
manner is crucial to the ongoing conduct of this work.

The overall aim of functional brain mapping is to determine where and how various cognitive
and perceptual processes are controlled in the normal and abnormal (diseased) human brain.
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MODELING NEUROIMAGING DATA 149

In discussing the need for a comprehensive cognitive ontology, Price and Friston (2005)
detailed a clear argument for the need for sophisticated network analysis tools. Because there
are an immeasurably large number of thought processes that control cognition, perception,
action, and interoception, and a finite number of brain regions involved in carrying out these
processes, these regions must interact in a highly complex and organized fashion. Determining
and characterizing these interactions is a natural and obvious application of SEM. There are
advantages to applying SEM to data acquired in human functional brain mapping. For example,
in contrast to other fields that utilize SEM methods, such as psychometrics, SEM of functional
neuroimaging data involves the analysis of variables that represent actual cortical regions
in the brain and path coefficients that reflect actual anatomical and functional connections
between these regions. The connections between regions model the interregional covariances
between physically remote brain regions. Because researchers know that these regions do not
operate independently of each other, SEM or path analysis offers the distinctive ability to
model the interrelationships of neural networks. An additional advantage of applying SEM
methods to functional neuroimaging data lies in the characteristics of the data itself. Whereas
raw neuroimaging image data can demonstrate significant nonnormal characteristics such as
skewness and kurtosis, the derived imaging data used in SEM analyses are highly parametric
and exhibit a high degree of measurement stability or reliability. This is due to extensive
preprocessing procedures such as realignment, spatial normalization, and smoothing techniques
(Ashburner & Friston, 1997; Friston, Ashburner, et al., 1995).

In this study, we present a two-step approach for developing a path analytic model using
functional imaging data (i.e., PET data were acquired from normal participants or those
exhibiting speech dysfunction while performing a reading task) representing regions of interest
within the human brain. We then evaluated the impact of sample size on statistical power
and parameter estimation bias on the model. The paradigm of speech production was chosen
because it represents an extremely rich area of human brain mapping research and one in
which the observed results are highly consistent, although highly distributed throughout the
brain. Early PET research focused on determining the neural correlates of speech, a language
attribute that is uniquely human and thus of great interest to the neuroscientific community
(Bookheimer, Zeffiro, Blaxton, Gaillard, & Theodore, 1995; Petersen, Fox, Posner, Mintun, &
Raichle, 1988; Price et al., 1994). Indeed, enough research has been published on the neural
correlates of speech production to warrant not one but several quantitative meta-analyses of the
overt reading paradigm (Brown et al., 2005; Fiez & Petersen, 1998; Fox et al., 2001; Turkeltaub
et al., 2002).

The selection of suitable regions of interest and neural pathways in the human brain given the
amount of information available to researchers is a challenging task. To meet this challenge,
we used quantitative ALE meta-analysis (Brown et al., 2005; Turkeltaub et al., 2002) and
Bayesian SEM to develop a “true” or population-based ROI model of speech production based
on findings from previous studies. Next, to examine the issues of sample size, statistical power,
and parameter estimation bias (i.e., robustness and accuracy), we conducted a Markov chain
Monte Carlo (MCMC) simulation study. Additionally, we examined the sensitivity of the model
to detect statistical differences in the structural regression weights and intercepts between
clinical and normal participants across the sample size conditions. Although the underlying
causal mechanisms of the neural correlates of speech in clinical and normal participants was
not the focus of this study, we believe that the ability of the analytic strategy to detect statistical
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150 PRICE ET AL.

differences in structural regression weights and intercepts between these groups provides a
potentially powerful analytic tool to aid researchers in their work.

METHOD

Data Acquisition and Participants

The data for this study included PET images from a previous study examining the neural
substrates of stuttering (Fox et al., 1996). Data included 10 male participants diagnosed with
chronic developmental stuttering (M age D 32.2 years, age range D 21–46 years) and 10
male healthy control participants who were normally fluent (M age D 32.3 years, age range
D 22–55 years). All participants gave informed consent according to the approved procedures
of the Institutional Review Boards of the University of Texas Health Science Center at San
Antonio and the University of California, Santa Barbara. All participants were scanned while
they performed three tasks: eyes-closed rest (rest), unaccompanied overt paragraph reading
of a text passage (solo), and overt paragraph reading while accompanied by a fluent audio
recording of the same paragraph (chorus). Paragraphs for both the solo and chorus conditions
were presented on a video display suspended above the participants, approximately 14 in. from
the eyes. In the chorus condition, a recording of a nonstutterer reading the same passage was
also presented via an earphone inserted into the left ear. Each 40-sec condition was imaged
three times in all participants (each participant reading the same text passage on three separate
trials); each participant underwent nine PET scans in a counterbalanced order.

PET imaging was performed with a General Electric (Milwaukee, WI) 4906 camera. Brain
blood flow was measured with H2

15O (half-life 123 sec), administered intravenously. Reading
commenced at the moment of tracer injection and was stopped after 40 sec of acquisition.
Task-induced changes in neural activity were detected as changes in the regional tissue uptake
of 15O-water (Fox & Mintun, 1989; Fox, Mintun, Raichle, & Herscovitch, 1984). To optimize
spatial normalization of the PET images, anatomical magnetic resonance imaging (MRI) data
were acquired for each participants on a 1.9 Tesla Elscint Prestige (Haifa, Israel) using a high-
resolution 3D Gradient Recalled Acquisitions in the Steady State (GRASS) sequence: repetition
time (TR) D 33 msec, echo time (TE) D 12 msec, flip angle D 60ı, voxel size D 1 mm3 ,
matrix size D 256 ! 192 ! 192, acquisition time D 15 min.

Image Preprocessing and Analysis

Each individual PET scan image was globally normalized by value-normalizing to whole brain
mean activity and scaling to an arbitrary mean of 1,000 (Fox, Mintun, Reiman, & Raichle,
1988; Friston et al., 1990; Raichle, Martin, Herscovitch, Mintun, & Markham, 1983). The
interscan and intrasubject movement was assessed and corrected in all PET images using the
Woods algorithm (Woods, Mazziotta, & Cherry, 1992, 1993). PET and magnetic resonance
images were spatially normalized relative to the Talairach and Tournoux (1988) standard brain
template using the algorithm of Lancaster et al. (1995). Locations of brain activation were
expressed as millimeter coordinates referenced to the anterior commissure as origin, the right,
superior, and anterior directions being positive. Data were averaged across trials within each
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MODELING NEUROIMAGING DATA 151

TABLE 1
Region of Interest (ROI) Coordinates

Brain Region X Y Z

Left primary motor cortex (LM1) !46 !10 40

Right primary motor cortex (RM1) 54 !10 36
Left rolandic operculum (LRO) !54 !8 20

Right rolandic operculum (RRO) 54 !8 20
Supplementary motor area (SMA) 4 !2 58

Cingulate cortex (CING) !6 8 40
Left auditory cortex (LAUD) !56 !14 4

Right auditory cortex (RAUD) 56 !26 2

Note. Networks nodes were selected from the image data ob-
tained from healthy control participants. The center of mass of each

ROI is presented here as a stereotactic coordinate in a standard brain
template in Talairach space (Talairach & Tournoux, 1988). The ROIs

extended 5 mm in each direction from the center of mass. Positron
emission tomography counts of regional cerebral blood flow were

averaged from the voxels in the ROIs from the rest, solo, and chorus
conditions from each of the three repeated trials.

of the three conditions and within the two patient groups, and grand-mean images for solo and
chorus conditions were compared to rest for stutterers and controls. Group mean subtraction
images (solo–rest and chorus–rest) were converted to Z score images (statistical parametric
images of Z scores).

Eight ROIs were extracted from this analysis based on ALE meta-analysis of previously
conducted studies corresponding to areas of high brain activation during speech production:
left and right primary motor cortex (LM1 and RM1), left and right rolandic operculum (LRO
and RRO), left and right auditory cortex (LAUD and RAUD), supplementary motor area (SMA),
and cingulate cortex (CING). The coordinates for these regions in Talairach space are presented
in Table 1. In an ALE meta-analysis, groups of foci are pooled for convergence in location.
This method was created by Turkeltaub et al. (2002), modified by Laird, McMillian, et al.
(2005), and has been used with increasing frequency to provide insight on varying patterns of
activation across studies in the human brain mapping literature (Fox et al., 2005; Grosbras et al.,
2005; Laird, Fox, et al., 2005; McMillian, Laird, Witt, & Meyerand, 2007; Owen, McMillian,
Laird, & Bullmore, 2005; Price & Friston, 2005).

Data Screening and Development of Region of Interest Variables

A total of 180 observations across 10 participants (3 trials or repeated measurements ! 3
imaging conditions ! 10 participants ! 2 groups: 1 clinical and 1 control) in 8 ROIs constituted
the raw data matrix for both the clinical and control groups. In both groups, there were no
missing data points in the matrices and the assumption of univariate and multivariate normality
was found to be tenable according to univariate z statistics (˙ 1.96) and Mardia’s (1970)
multivariate criteria.
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152 PRICE ET AL.

Prior to deriving the composite ROI variables, we examined the data according to the
following psychometric and statistical criteria: (a) autoregressive properties of the three trials or
repeated measurements for each ROI averaged across scan condition, (b) the interaction effect
between scan condition and trial within each ROI, and (c) the measurement and structural
properties of each ROI by specifying eight separate correlated-error measurement models.
First we examined the autoregressive properties of the three repeated measurements for each
ROI by fitting general Markov and stationary Markov (lag-2 and lag-3 time effects) models
as a function of each successive measurement within each respective ROI, plus a random
error component (Arbuckle, 1996; Wothke, 2000). Because the general Markov and stationary
Markov models are hierarchically nested, chi-square difference tests were conducted for each
ROI to determine the existence of a lag-2 or lag-3 time effect. In all eight ROIs, the stationary
Markov model was rejected, indicating the presence of a lag-1 time effect across the successive
measurements. Based on the results of these tests, aggregated composite variables were created
(Bagozzi & Edwards, 1998) using the three correlated measurements obtained for each ROI
using a weighting scheme that incorporated the lag-1 time effect.

Second, to examine the interaction between scan condition and trial within each ROI,
eight univariate analyses of variance were conducted. No statistical interaction between scan
condition and trial was observed for either the clinical or control groups.

Finally, we examined the measurement and structural properties for each ROI by regressing
each region on the three repeated measurements (averaging over scan conditions) for a particular
region. For the eight regions of interest, each measurement model exhibited excellent fit to the
data. In each ROI, we screened the data based on the recommendation of Hoyle and Kenny
(1999), that prior to deriving the ROI composite variables, the reliability coefficients of each
of the ROI composites should be equal to or greater than .90. Hoyle and Kenny (1999, p. 202)
noted that this screening step is particularly critical in composite variable path analytic models
that include mediator variables and sample sizes of less than 100 to minimize the impact of
measurement error on parameter estimates and statistical power.

After screening and evaluating the requisite assumptions for using an aggregated composite
variable path analytic approach, our derivation of the ROI variables proceeded by adhering
to the conventions presented in McDonald (1996). McDonald’s criteria for using composite
variables within the SEM framework are (a) the variables are “random” (e.g., in this study the
data captured using PET scans were obtained from participants in a true experimental setting),
(b) a random composite variable is a function (e.g., an optimally weighted sum in this case) of
component random variables if and only if each of its components is observable, and (c) each
of the ROI composite variables is represented as a “block.” An observed (composite) variable
approach, rather than a latent variable approach, was used in this study for the following reasons.
First, we were limited to three measurements on each ROI for only 10 participants in each
study group. Second, because the ROIs of interest are existing anatomical structures within the
human brain, an observed variable approach is logical and provided a parsimonious approach
to our model development. Third, the process for investigating and modeling the correlated
structure of the three repeated measurements on each participant was more parsimonious.
Finally, the reliability of each ROI composite variable was greater than .90, thereby making
any gains by correcting for attenuation of measurement error using a latent variable approach
negligible.
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MODELING NEUROIMAGING DATA 153

Population Model Development Using Bayesian SEM

The history and development of Bayesian statistical methods are substantial and closely related
to frequentist statistical methods. In fact, Gill (2002) noted that the fundamentals of Bayesian
statistics are older than the current dominant paradigms. In some ways, Bayesian statistical
thinking can be viewed as an extension of the traditional (i.e., frequentist) approach, in that it
formalizes aspects of the statistical analysis that are left to uninformed judgment by researchers
in classical statistical analyses. In the Bayesian modeling approach, researchers view any
unknown quantity (e.g., parameter) as random and these quantities are assigned a probability
distribution (e.g., normal, Poisson, multinomial, geometric, etc.) that provides the impetus for
generating a particular set of data at hand. In this study, our unknown population parameters
were modeled as being random and then assigned to a joint probability distribution. In this way,
we were able to summarize our current state of knowledge regarding the model parameters.
At present, the sampling-based approach to Bayesian estimation provides a solution for the
random parameter vector ™ by estimating the posterior density or distribution of a parameter.
This posterior distribution is defined as the product of the likelihood function (accumulated
over all possible values of ™) and the prior density of ™ (Lee & Song, 2004). The process
of Bayesian statistical estimation approximates the posterior density or distribution of say, y ,
p.™jy/ / p.™/L.™jy/ where p.™/ is the prior distribution of ™, and p.™jy/ is the posterior
density of ™ given y. This expression exemplifies the principle that updated knowledge results
from combining prior knowledge with the actual data at hand. Finally, Bayesian sampling
methods do not rely on asymptotic distributional theory and therefore are ideally suited for
investigations in which small sample sizes are common (Ansari & Jedidi, 2000; Dunson, 2000;
Scheines, Hoijtink, & Boomsma, 1999).

Development of our ROI population model proceeded by specifying the scheme of relations
among the ROIs within the brain, as presented in Figure 1. The ROIs used in Figure 1 were
selected based on the results of ALE meta-analysis of previous studies investigating the neural

FIGURE 1 Region of interest path model.
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154 PRICE ET AL.

correlates of speech. The direction and scheme of the paths illustrated in Figure 1 were posited
based on a theoretically plausible neural activation network scheme derived from ALE meta-
analysis and then verified by conducting a Bayesian SEM specification search algorithm.

The model in Figure 1 served as the baseline for Bayesian estimation of the model parameters
using the MCMC methodology (i.e., Metropolis–Hastings algorithm) and Gibbs sampling
(Geman & Geman, 1984). The estimation process proceeded by using centered parameteri-
zation, allowing the composite ROI variables to have free intercepts and variances and diffuse
(noninformative) uniform priors for the vector of parameters, including the variance compo-
nents. Although the conceptual design of our path model (i.e., ROIs and regression paths)
was informed by ALE meta-analysis, we used a noninformative normal prior distribution for
structural regression weights and variance components to prevent the possible introduction of
parameter estimation bias due to potential for poorly selected priors (Jackman, 2000; Lee,
2007, p. 281). We followed guidelines offered by Raftery and Lewis (1992) in determining
the selection of the number of MCMC burn-in iterations with respect to establishing the
convergence criteria for the joint posterior distribution of the model parameters. Based on
a review of convergence diagnostics, we selected a burn-in sample of N D 1,000 and the
convergence criterion for acceptable posterior distribution summary estimates of parameters
was set at 1.001. Additionally, we examined the posterior distribution by evaluating time series
and autocorrelation plots to judge the behavior of the MCMC convergence. In both instances,
the plots revealed no abnormalities regarding the performance of the MCMC method. Bayesian
estimation (incorporating the MCMC algorithm) of the model parameters was conducted using
the Bayesian SEM facility in the Analysis of Moment Structures 6.0 (AMOS; Arbuckle, 2005)
computer program. Table 2 provides the means, standard deviations, and lower and upper 95%

TABLE 2
Posterior Summary of Bayesian Estimates (N D 100,000 Analysis Samples)

Control Clinical

Credible

Interval

Credible

Interval

Regression Path M SD 95% LL 95% UL M SD 95% LL 95% UL

LRO RM1 .45 0.15 0.05 0.65 .54 0.12 0.29 0.76

LAUD CING .38 0.13 0.11 0.65 .18 0.18 !0.16 0.54
RAUD CING .22 0.19 !0.19 0.60 .41 0.15 0.10 0.70

RRO LM1 .22 0.38 !0.56 0.98 .54 0.09 0.34 0.72
LM1 SMA .13 0.11 !0.09 0.35 .36 0.17 0.02 0.69

RM1 SMA .39 0.15 0.08 0.71 .53 0.15 0.22 0.84
LAUD RRO .62 0.18 0.25 1.00 .30 0.12 0.06 0.54

RM1 LAUD .41 0.22 !0.06 0.82 .14 0.14 !0.13 0.42

Note. Mean is an estimate obtained by averaging across the random samples produced by the Markov chain
Monte Carlo procedure. SD is analogous to the standard deviation in maximum likelihood estimation. LL D lower

limit; UL D upper limit; LRO D left rolandic operculum; RM1 D right primary motor cortex; LAUD D left auditory
cortex; CING D cingulate cortex; RAUD D right auditory cortex; RRO D right rolandic operculum; LM1 D left

primary motor cortex; SMA D supplementary motor area.
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MODELING NEUROIMAGING DATA 155

credible intervals for the standardized regression weights estimated for the baseline population
model.

Monte Carlo Study

MCMC-based simulation provides an empirical basis that allows researchers to observe the
behavior of a given statistic or statistics across a particular number of random samples.A
particular strength of conducting an MCMC simulation in this study is that we can examine
specific methodological questions that otherwise would be either impossible or restrictively
expensive to answer. Our simulation investigation focused on examining the impact of sample
size on the accuracy (i.e., parameter estimation bias) and statistical power of the model to
recover the baseline parameter estimates for the control and clinical groups. Accordingly,
we proceeded by generating data for the variables in our model using a multivariate normal
distribution for each of the following six sample sizes for both clinical and control groups:
(a) N D 10, (b) N D 15, (c) N D 20, (d) N D 25, (e) N D 50, and (f) N D 100. This
6 (sample size) ! 2 (group) design resulted in 12,000 data sets each of size 1,000. For all
simulations, the internal Monte Carlo facility within Mplus version 4.2 was used to derive
maximum likelihood parameter estimates with robust standard errors (i.e., the MLR option;
Muthén & Muthén, 2005, p. 268). Parameter estimates derived from the baseline model for
each respective study group then served as the population starting values.

RESULTS

Table 3 provides a summary of the fit statistics obtained from the 1,000 MCMC simulations
across each level of sample size by control and clinical groups. At a sample size of N D 10,
for both groups, the chi-square was rejected at the ’ D :001 level, indicating that the model
did not display acceptable fit to the data. Across sample size levels of N D 15 and greater,
for both groups the chi-square was not rejected at the ’ D :05 level, indicating an acceptable
level of overall fit of the model to the data. Furthermore, at sample sizes of N D 25 and
larger, both groups displayed acceptable root mean squared error of approximation (RMSEA)
point estimates (.08 or less) as recommended by Steiger (1990); however, examination of the
95% confidence intervals (CIs) reveals the possibility that, in the population, RMSEA values
of greater than .08 can exist at samples sizes below 100.

Table 4 provides the true population parameters and the MCMC-generated average parameter
estimates across replications by each level of sample size for the control and clinical groups.
At a sample size of N D 10, for the normal group, three out of eight path loadings displayed
parameter estimation bias of greater than 5%, and one out eight paths displayed an estimation
bias greater than 10%. Specifically, in the normal group, a pattern of estimation bias greater
than 5% was observed for the CING to RAUD, SMA to LM1, and SMA to RM1 paths at a
sample size of N D 10. In the clinical group, N D 10 sample size, one out of eight paths
(i.e., CING to LAUD) displayed parameter estimation bias greater than 5%. Across sample
sizes of N D 15 or greater for both groups, no more than two parameter estimates presented
a level of bias greater than 3%. Specifically, in the clinical group, a pattern of estimation bias
greater than 3% was observed for the CING to LAUD path at a sample size of 25 or smaller.
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156 PRICE ET AL.

TABLE 3
Monte Carlo Fit Statistics Summary

Sample Size ¦2 df p AIC BIC RMSEA

RMSEA 95%

CI

Control group
10a 43.54 18 < .001 1,021.59 1,027.94 0.35 0.0–.52

15 28.92 18 .05 1,622.49 1,537.25 0.17 0.0–.37
20 25.07 18 .12 2,158.73 2,114.90 0.12 0.0–.28

25 22.75 18 .20 2,695.33 2,655.81 0.08 0.0–.22
50 20.04 18 .33 5,378.90 5,353.14 0.04 0.0–.13

100 19.08 18 .38 10,748.41 10,736.79 0.03 0.0–.08
Clinical group

10a 44.68 18 < .001 1,022.67 1,029.02 0.36 0.0–.52
15 28.25 18 .06 1,529.70 1,480.46 0.17 0.0–.34

20 25.07 18 .12 2,038.86 1,995.03 0.12 0.0–.28
25 23.09 18 .18 2,543.73 2,504.21 0.08 0.0–.23

50 20.25 18 .32 5,076.53 5,050.77 0.04 0.0–.13
100 18.47 18 .42 10,139.80 10,128.19 0.02 0.0–.08

Note. AIC D Akaike Information Criterion; BIC D Bayes Information Criterion; RMSEA D root mean squared

error of approximation.
aIndicates that the fit of the model was rejected at a sample size of N D 10 across 1,000 replication trials.

Alternatively, in the control group, a pattern of estimation bias greater than 3% was observed
for the LM1 to RRO path at all sample size conditions.

Table 5 provides the average standard errors across 1,000 replications, estimates of statistical
power, and the 95% coverage proportions obtained from the MCMC analyses by level of sample
size. In Tables 3 and 4, at all control and clinical group sample sizes, parameter estimates of
path loadings flagged as having a bias of greater than 3%, 5%, and 10% are displayed. Table 5
provides the standard errors of parameter estimates, statistical power, and the proportion of
replications for which the 95% CI contains the true population parameter. At a sample size of
N D 25 participants per group or less, in both groups, statistical power dropped below .80 in
five out of eight paths.

Finally, the tenability of the model to detect statistical differences between the groups related
to their structural regression (path) weights and structural intercepts (means) yielded positive
results. Simultaneous estimation of the model with both clinical and normal participants at
sample size conditions of N D 15 or greater provided evidence that the modeling approach
was sensitive to detecting statistical differences between the clinical and normal groups of
participants. Specifically, differences at p < :001 were observed in the structural regression
weights and structural intercepts between the clinical and normal participants at a sample size
of N D 15 participants per group and greater.

DISCUSSION AND CONCLUSIONS

The aims of this study were to develop and test a path analytic model using functional imaging
data representing regions of interest within the human brain, and to evaluate the performance
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TABLE 4
Parameter Estimates and Estimation Bias of Path Loadings by Sample Size

Sample Size

10 15 20

Path Contl Pop Clin Pop Contl Pop Clin Pop Contl Pop Clin Pop

LRO RM1 .45 .45 .56 .54 .45 .45 .54 .54 .45 .45 .54 .54

LAUD CING .37 .38 .19b .18 .37 .38 .19a .18 .38 .38 .19a .18
RAUD CING .24b .22 .40 .41 .22 .22 .41 .41 .22 .22 .41 .41

RRO LM1 .26c .22 .54 .54 .23a .22 .54 .54 .21a .22 .54 .54
LM1 SMA .14b .13 .36 .36 .13 .13 .36 .36 .14a .13 .36 .36

RM1 SMA .41b .39 .52 .53 .38 .39 .53 .53 .39 .39 .53 .53
LAUD RRO .61 .62 .30 .30 .61 .62 .30 .30 .62 .62 .30 .30

RM1 LAUD .41 .41 .14 .14 .40 .41 .14 .14 .41 .41 .14 .14

Sample Size

25 50 100

Path Contl Pop Clin Pop Contl Pop Clin Pop Contl Pop Clin Pop

LRO RM1 .45 .45 .55 .54 .45 .45 .55 .54 .45 .45 .54 .54

LAUD CING .38 .38 .17a .18 .38 .38 .17a .18 .38 .38 .18 .18
RAUD CING .21a .22 .41 .41 .21a .22 .41 .41 .21a .22 .41 .41

RRO LM1 .21a .22 .54 .54 .23a .22 .54 .54 .23a .22 .54 .54
LM1 SMA .14 .13 .36 .36 .13 .13 .36 .36 .13 .13 .36 .36

RM1 SMA .39 .39 .53 .53 .39 .39 .53 .53 .39 .39 .53 .53
LAUD RRO .62 .62 .30 .30 .62 .62 .30 .30 .62 .62 .30 .30

RM1 LAUD .41 .41 .14 .14 .40 .41 .15 .14 .40 .41 .14 .14

Note. Contl D control group Monte Carlo estimates; Clin D clinical group Monte Carlo estimates; Pop D
population parameters; LRO D left rolandic operculum; RM1 D right primary motor cortex; LAUD D left auditory

cortex; CING D cingulate cortex; RAUD D right auditory cortex; RRO D right rolandic operculum; LM1 D left
primary motor cortex; SMA D supplementary motor area. aBias greater than 3%. bBias greater than 5%. cBias greater

than 10%.

of the model (i.e., parameter estimates, standard errors, and statistical power) across different
sample size conditions. Using ALE and Bayesian SEM, we developed a baseline model that
exhibited excellent fit to the empirical data in both the normal and clinical groups. Using our
baseline model, we then evaluated the performance of the model in both groups using a Monte
Carlo simulation study. Specifically, we examined the impact of sample size on the performance
of the model to recover baseline model parameter estimates with an acceptable level of statistical
power (.80 or greater) and with a minimal level (< 3%) of parameter estimation bias.

At a sample size of N D 10, in the normal group, three of eight path loadings displayed
biased parameter estimates at a level greater than 5%, and one of the eight paths displayed
a parameter estimation bias of greater than 10%. In the clinical group, at a sample size of
N D 10, one of the eight path loadings displayed a parameter estimation bias of greater
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than 5%. This information is particularly important to the neuroscience community involved
in functional imaging research in which the cost of data acquisition and analysis is high (e.g.,
approximately $3,000 per participant) and participant sample sizes are often below N D 20.
At a sample size of N D 15, for both normal and clinical groups, only one out of eight path
loadings displayed a bias in parameter estimation greater than 3%. Furthermore, in the N D 15
sample size condition, the proportion of replication trials for which the 95% CI contained the
true population parameters and associated standard errors ranged from 86% to 96% (i.e., 860–
960 replication samples). Importantly, statistical power was observed as being below .80 (i.e.,
between .15 and .79) in all eight estimated regression weights (representing paths) for both
groups in the sample size (N D 10) condition. Statistical power was observed as being below
.80 in five out of the eight estimated paths for the control group and seven out of eight for the
clinical group in the sample size (N D 15) condition. Statistical differences .p < :001/ were
observed in ROI neural activity in the network and within the ROIs for the structural regression
weights and structural intercepts between the clinical and normal participants at sample size
conditions of N D 15 participants per group and greater.

We have presented a two-step analytic approach for modeling effective connectivity among
anatomic regions within the human brain using data acquired using PET. Importantly, the
results of methodological-oriented neuroimaging analytic studies such as ours are of interest to
the neuroscience community, in which the ongoing conduct of imaging research is crucial
to an increased theoretical and applied understanding of neural systems, yet the cost of
conducting such work is very high. The aims of our study were (a) to provide researchers with a
highly informed approach to model the human neural system that uses ALE meta-analysis and
Bayesian SEM, and (b) to evaluate the derived model regarding the impact of different sample
size conditions on statistical power and parameter estimation bias. Importantly, the results
from this research will aid researchers in developing informative models and most important,
for planning appropriately for adequate sample sizes to ensure reliable and valid results. Our
findings illustrate that the ALE/SEM-based approach performed well at sample sizes as small
as N D 15 for both speech-impaired and normal participants. Below a sample size of N D 15,
statistical power dropped substantially below .80 in seven out of eight regression weights (i.e.,
statistical power ranged from a low of .15 to a high value of .79 at a sample size of N D 10
in both groups), and parameter estimation bias increased above 5% in seven out of eight paths,
and above 10% in 1 out of 10 paths in the clinical group. Based on these findings, we do
not recommend using sample sizes less than 15 participants per analytic group. Although the
primary aims of our study did not include examining the sensitivity of the model to detect
statistical differences between the normal and clinical groups, we believe that the ability of
the modeling approach to detect statistical differences in structural regression weights and
intercepts between these groups provides a potentially powerful analytic tool to aid researchers
in their work.

In summary, the two-step approach of using ALE meta-analysis and Bayesian SEM to
develop a path model for investigating the effective connectivity of neural systems in humans
appears to be a viable strategy at sample sizes as small as N D 15 participants per group.
Ultimately, we believe that the results of our work will aid neuroscientists and cognitive
researchers in designing SEM-based studies to evaluate and test complex network models
using dynamic neuroimaging data.
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