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The association cortex supports cognitive functions enabling flexible
behavior. Here, we explored the organization of human association
cortex by mathematically formalizing the notion that a behavioral
task engages multiple cognitive components, which are in turn sup-
ported by multiple overlapping brain regions. Application of the
model to a large data set of neuroimaging experiments (N= 10 449)
identified complex zones of frontal and parietal regions that ranged
from being highly specialized to highly flexible. The network organ-
ization of the specialized and flexible regions was explored with an
independent resting-state fMRI data set (N= 1000). Cortical regions
specialized for the same components were strongly coupled, sug-
gesting that components function as partially isolated networks.
Functionally flexible regions participated in multiple components to
different degrees. This heterogeneous selectivity was predicted by
the connectivity between flexible and specialized regions. Function-
ally flexible regions might support binding or integrating specialized
brain networks that, in turn, contribute to the ability to execute mul-
tiple and varied tasks.

Keywords: cognitive ontology, functional connectivity, meta-analysis,
parietal cortex, prefrontal cortex

Introduction

The association cortex is critical for higher cognitive functions
that form the basis for flexible, adaptive behavior. Yet, clarity
regarding the distribution and degree of functional specializa-
tion and domain generality within the association cortex remains
elusive. We approached this conundrum with a novel strategy to
mathematically model task-based neuroimaging data in relation
to cognitive components engaged by the tasks. By applying the
model to a large data set, insights into the functional organization
of association cortex emerged.

While functional specialization is established for early sensory
regions, there is uncertainty regarding the ontology of cognitive
functions, how regions of association cortex support these func-
tions, and how they relate to task paradigms commonly used in
cognitive neuroscience. There are at least two reasons for this
lack of consensus. First, generalizing from individual studies that
infer function from a limited number of behavioral tasks can
be difficult (Fox and Lancaster 2002; Wager et al. 2007). Second,
it remains challenging to decompose complex behavior into

meaningful neurocognitive components (Bechtel 2002; Price
and Friston 2005; Poldrack 2006). For example, dorsolateral pre-
frontal cortex (DLPFC) is recruited by a wide range of tasks (D’E-
sposito et al. 1995; Miller and Cohen 2001; Petrides 2005; Badre
and D’Esposito 2009; Duncan 2013), but it is unclear whether
DLPFC is involved in the same cognitive process across tasks or
different processes in different tasks and whether the complexity
emerges because of functional diversity across subregions of
DLPFC.

Meta-analysis can be a valuable means of augmenting the
results of individual studies. In their influential meta-analysis,
Duncan and Owen (2000) suggested that substantial portions of
human prefrontal cortex (PFC) are recruited across multiple
“cognitive demands” but left open the question of functional
specialization. One complication of neuroimaging meta-analyses
of functional specialization is that they often categorize task con-
trasts into distinct, non-overlapping categories a priori (but see
exceptions Poldrack et al. 2012; Varoquaux et al. 2013). For
example, “Anti-Saccade” and “Stroop” tasks have been used to
study “response conflict” and might thus be grouped together
(Duncan and Owen 2000). While carefully selected control con-
ditions serve to isolate processes of interest, differences in the
underlying composition of processes could remain. In this
example, “Anti-Saccade” and “Stroop” could differ in terms of
stimulus and response modalities, number of response options
and response prepotency. These differences might not be com-
pletely eliminated by standard contrasts.

Dividing tasks into non-overlapping categories precludes
the possibility that tasks from distinct categories might recruit
common processes and tasks from the same category might
recruit additional distinct processes (Fig. 1). Therefore, a brain
region specialized for process “A” might be mistaken as func-
tionally flexible if task contrasts from distinct categories recruit
process “A.” Conversely, a brain region flexible for processes
“A” and “B” could be mistaken as functionally specific if task
contrasts from the same category recruit either process “A” or
“B” (in addition to processes shared across tasks within the cat-
egory).

Here, we extend previous meta-analyses (e.g., Duncan and
Owen 2000; Gilbert et al. 2006; Cieslik et al. 2013) by applying
a novel data-driven approach to 10 449 experimental contrasts
from the BrainMap® (Fox and Lancaster 2002) database. Build-
ing on the premise (Fig. 1) that different behaviors may recruit
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distinct and overlapping sets of brain regions (Walton and Paul
1901; Posner et al. 1988; Mesulam 1990; Price and Friston
2005; Poldrack 2006), our approach allowed us to consider
principles of functional organization not easily captured by
prior meta-analyses. More specifically, we developed a formal
mathematical instantiation of Figure 1, whose model para-
meters can be estimated from the meta-analysis. This allowed
the identification of cognitive components that are shared
across tasks, without pre-defining task membership. The esti-
mated parameters enabled the derivation of quantitative maps
of functional specialization and flexibility across the cerebral
cortex. The network organization of these functionally specific
and flexible regions was further characterized using an inde-
pendent resting-state fMRI data set (N = 1000).

The results advance our understanding of association cortex
organization in several ways. First, we identified a set of cogni-
tive components, each of which was associated with meaning-
ful distributions of tasks and brain activations. Second, there
were numerous association regions that were functionally spe-
cific for distinct cognitive components. Regions specialized for
the same cognitive components were strongly coupled during
the resting state, suggesting that components are supported by
partially isolated networks. Although there have been many
prior studies demonstrating functional specificity, there are
ongoing debates regarding the nature of the specializations
(e.g., Mitchell 2008; Young et al. 2010). Without careful experi-
mental manipulations, we do not suggest that meta-analysis
will fully resolve these issues. Nevertheless, by aggregating evi-
dence across thousands of experiments, our meta-analysis pro-
vides a consensus map of functional specialization and
flexibility in the human cerebral cortex. Third, we confirmed

the presence of functionally flexible regions in frontal and
parietal cortex that participated in multiple components
(Fedorenko et al. 2013). Moreover, the functionally flexible
regions were themselves heterogeneous, that is, while the
regions support multiple cognitive components, each does
so to a different degree. The resting-state connectivity of
the flexible regions predicted their selectivity to specialized
regions of different components. One possibility is that func-
tionally flexible regions integrate information from segregated
brain networks specialized for distinct functions.

Methods

Overview
A hierarchical Bayesian model (Fig. 1) was applied to 10 449 experi-
mental contrasts in the BrainMap database to obtain cognitive compo-
nents shared across 83 BrainMap-defined task categories. The model
captures the premise that behavioral tasks recruit multiple overlapping
cognitive components, which are in turn supported by overlapping
brain regions. Subsequent analyses proceeded in four stages. First, the
estimated components were examined for insights into tasks involving
motor processing or cognitive control. Next, we explored how the esti-
mated components changed as a function of the number of compo-
nents. The estimated model parameters were then utilized to compute
maps of functional specificity and flexibility across the cerebral cortex,
focusing on lateral frontal and parietal cortices. Finally, an independ-
ent resting-state fMRI data set (N = 1000) was employed to explore the
network organization of the functionally specific and flexible regions.

BrainMap
At the time of analysis, the BrainMap database (Fox and Lancaster
2002) contained findings from 2194 journal articles. Each study typical-
ly comprised multiple experiments, defined by BrainMap as the com-
parison of 2 or more imaging conditions resulting in an activation
image. For example, a study employing the “n-back” task might
include an experimental contrast comparing “3-back” with “0-back”
and another comparing “3-back” with “1-back,” resulting in 2 activa-
tion maps. The 2194 studies were associated with 10 449 experimental
contrasts and 83 178 activation foci.

The spatial locations of these activations were represented via the
coordinates of statistically significant local maxima in the activation
images. All foci coordinates were in or transformed to the MNI152 co-
ordinate system (Lancaster et al. 2007). Following standard analysis
procedure (Wager et al. 2007; Yarkoni et al. 2011), a 2-mm-resolution
binary activation image was constructed for each experimental con-
trast, where a voxel was assigned a value of 1 if it was within 10 mm of
any activation focus and 0 otherwise.

In BrainMap, each experiment is tagged with 1 or more task cat-
egories. At the time of analyses, there were 83 task categories (e.g.,
“n-back” and “Flanker”), referred to as “paradigm classes” in the Brain-
Map lexicon. Definitions of the 83 tasks can be downloaded here (https
://surfer.nmr.mgh.harvard.edu/fswiki/BrainmapOntology_Yeo2015). The
definitions of the task categories were driven by common usage in the
literature and were often stated explicitly in the papers (Fox et al.
2005). Therefore, they provide a relatively objective (albeit imperfect)
means for organizing the 10 449 experiments while preserving consid-
erable depth of content, as indicated by the 83 unique identifiers.

Author-Topic Hierarchical BayesianModel
We sought a mathematical model that captured the premise that perform-
ing a task results in the recruitment of multiple cognitive components
supported by multiple brain regions (Fig. 1). Furthermore, the model
should allow for the possibility that tasks recruit overlapping compo-
nents and brain regions participate in multiple components. Among the
many (unlimited) models satisfying the above-mentioned requirements,
the author-topic model (Supplementary Fig. 1) was perhaps the simplest
and was therefore applied to the BrainMap database.

Figure 1. Relationships among experiments, tasks, cognitive components, and brain
regions. Underpinning our approach is the premise that performing any given task often
engages not one but several cognitive components that are in turn supported by
multiple brain regions (Walton and Paul 1901; Posner et al. 1988; Mesulam 1990;
Poldrack 2006). Different tasks might engage common and distinct cognitive
components. Furthermore, different components may activate common and distinct
brain regions. Here, we demonstrated that the framework can be instantiated with a
formal mathematical model (Rosen-Zvi et al. 2010), whose parameters can be
estimated. The estimated model parameters are the probability that a task would
recruit a cognitive component for an activation focus (i.e., Pr(component | task)) and
the probability a cognitive component would activate a brain voxel for an activation
focus (i.e., Pr(voxel | component)). The model parameters enabled us to derive
quantitative maps of functional specialization and flexibility across the cerebral cortex.
Here, the term “cognitive component” is operationally defined as latent variables
within the mathematical model (Supplementary Fig. 1).
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The author-topic model was originally developed for analyzing text
corpora (Rosen-Zvi et al. 2010). The model assumes that a text docu-
ment is composed of an unordered collection of words written by a
group of authors. Each author is represented by a probability distribu-
tion over (hidden) topics, and each topic is represented by a probabil-
ity distribution over a dictionary of words. Given a collection of text
documents, there exist algorithms to estimate the distribution of topics
associated with each author and the distribution of dictionary words
associated with each topic (Rosen-Zvi et al. 2010). The author-topic
model is useful because it allows for the identification of a document
to be composed of multiple topics (which can be shared across docu-
ments), and each topic can be composed of multiple words (which can
be shared across topics).

To map the author-topic model to Figure 1, one can think of experi-
mental contrasts (instead of text documents), BrainMap task categories
(instead of authors), cognitive components (instead of topics), MNI152
voxels (instead of dictionary words) and activation foci (instead of
document words). Here, “cognitive components” refers to the latent
variables within the mathematical model (Supplementary Fig. 1),
bridging between tasks and brain activation. The term “cognitive” is
used broadly to encompass components (e.g., motor and affective)
that may not be typically considered cognitive.

Under the author-topic model, suppose there are F activation foci
reported in an experiment utilizing a set of tasks (in most cases, the set
of tasks consists of a single-task category (e.g., n-back). A small per-
centage of experiments in BrainMap utilized tasks from >1 task cat-
egory). The fth activation focus is assumed to be generated by first
randomly selecting a task from the set of tasks associated with the ex-
periment. Given the task, a component is then randomly selected
based on the probability that the task would recruit a component (Pr
(component | task)). Given the component, the voxel location of the
activation focus is then randomly selected based on the probability that
the component would activate a voxel (Pr(voxel | component)). We
denote the entire collection of Pr(component | task) and Pr(voxel |
component) as u and β, respectively. Therefore, u and β are matrices,
where each row is a categorical distribution summing to 1. For
example, the 11th row and 14th column of u corresponds to Pr(14th
component | 11th task) and the 20th row and 50th column of β corre-
sponds to Pr(50th voxel | 20th component).

The author-topic model assumes that the ordering of words within
a document is exchangeable. In the context of our application, the cor-
responding assumption is that the ordering of activation foci is ex-
changeable. Although word order in real documents is important, the
ordering of foci (e.g., prefrontal vs. parietal) reported in an experiment
is arbitrary and thus consistent with the assumption. Consequently, the
author-topic model appears particularly well-suited for application to
the present context.

Given the 10 449 BrainMap experiments with associated activation
coordinates and task categories, as well as the number of cognitive
components NC, the probabilities u and β were estimated using Gibbs
sampling (Rosen-Zvi et al. 2010) and expectation maximization
(Dempster et al. 1977). Further mathematical and implementation
details are found in Supplementary Material.

Interpreting the Model Parameters
Since Pr(component | task) summed to 1 over all components, one
might be concerned that greater recruitment of 1 component might
reduce recruitment of other components. However, the probabilities
should be interpreted within the context of the model from which the
probabilities were estimated. Under the author-topic model, Pr(com-
ponent | task) should be strictly interpreted as the probability of a task
recruiting a cognitive component for an activation focus and not the
probability of a task recruiting a component for an entire experiment.
For example, suppose there were 5 activation foci for an experiment
using task T and Pr(component X | Task T) was only 0.3. Then, the
probability that task T recruits component X for the entire experiment
is equal to the probability that component X was recruited for at least 1
focus, that is, 1 − (1 − 0.3)5 = 0.83.

A task recruiting more components would have lower Pr(compo-
nent | task) on average because the probability sums to 1 over all

components. However, the task might also result in more activation
foci on average. For instance, a theory of mind task requiring visual
imagery might (on average) report more activation foci than a visual
imagery task alone, because the theory of mind task with visual
imagery would have activation foci associated with both theory of
mind and visual processing.

Considering the above, Pr(voxel | component) should be strictly in-
terpreted as the probability of a voxel activated by a cognitive compo-
nent for an activation focus. Nevertheless, as will be seen, control
analyses including those utilizing a separate resting-state data set sug-
gested that Pr(component | task) and Pr(voxel | component)
summing to 1 was not a serious confound.

An alternative (but not necessarily more biologically plausible)
model, where Pr(voxel | component) and Pr(component | task) do
not sum to 1 over all voxels and components, respectively, is discussed
in Supplementary Material. Such a model is currently computationally
infeasible.

Displaying Pr(component | task) and Pr(voxel | component)
The Circos software (Krzywinski et al. 2009) was used to visualize the
full matrix Pr(component | task), θ (Fig. 2). For visualization purpose,
tasks with similar Pr(component | task) were more closely positioned.
More specifically, Pr(component | task) was clustered with the linkage
algorithm (Matlab 7.11: “average” method, “correlation” metric) and
the resulting dendrogram was used to order the tasks. This visualization
strategy was especially useful for interactive exploration of the estimated
ontology: https://surfer.nmr.mgh.harvard.edu/fswiki/BrainmapOntology
_Yeo2015, last accessed September 12, 2014.

Pr(component | task) was also plotted as a colored matrix (Fig. 3).
Given space constraints, only a reduced set of tasks meeting 2 selection
criteria are shown. The first selection criterion was that the tasks were
among the top 5 tasks for at least 1 component. The second criterion
was that the task was utilized by at least 10 unique studies. Because
certain tasks were among the top 5 tasks of >1 components, the
reduced task set for the 12-component estimate contained 51 tasks
(instead of 60). The ordering of the tasks was the same as the Circos
visualization.

The matrix Pr(voxel | component), β, can be interpreted as NC brain
images in MNI152 space. Volumetric slices highlighting certain subcor-
tical structures were displayed using FreeSurfer (Fischl 2012). To visu-
alize the cerebral cortex, the volumetric images were transformed to
PALS-B12 surface space using Caret (Van Essen and Dierker 2007) via
the FreeSurfer surface space (Fischl 2012). The details of these trans-
formations have been previously described (Buckner et al. 2011; Yeo
et al. 2011).

For visualization, Pr(component | task) was thresholded at 1/NC,
whereas Pr(voxel | component) was thresholded at 1e − 5. Given that
there were 284 100 voxels within the MNI152 brain mask, thresholding
Pr(voxel | component) at 1e − 5 (≈ 3 × 1/284 100) is relatively strin-
gent. There is no simple way of thresholding the model estimates. Con-
sequently, the unthresholded model estimates for 10 to 14 components
are made publicly available (https://surfer.nmr.mgh.harvard.edu/fswiki/
BrainmapOntology_Yeo2015, last accessed September 12, 2014). To
allow easier interpretation, only task categories with at least 10 unique
studies were considered in the creation of tables and figures emphasizing
the top task categories for each component.

Number of Cognitive Components
An important model parameter is the number of cognitive components.
Therefore, how the estimated components changed as a function of the
number of components was explored in two ways. First, cross-validation
was utilized to evaluate the model generalization power as a function of
the number of cognitive components NC. More specifically, the model
parameters were estimated based on a random 95% subset of the data,
and the resulting generalization power was computed on the remaining
5% of the data. Generalization power was defined as the negative of the
perplexity measure (Section 7.1 of Blei et al. 2003), so larger values cor-
responded to strong generalization power. This procedure was repeated
100 times and the generalization power was averaged, resulting in a plot
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of averaged generalization power as the number of cognitive compo-
nents was increased from 2 to 20.

Second, an exhaustive search was employed to assess the possibility
that 2 unknown components of the (N + 1)-component estimate were
subdivisions of an unknown component of the N-component estimate
(while the remaining N − 1 components were consistent across both es-
timates). This exhaustive search yielded a hypothesized subdivision
with associated correlation values quantifying the quality of the sub-
division. The procedure was repeated from N = 2 to N = 19. The correl-
ation values were plotted as a function of N. High correlation values
implied evidence for a nested ontology. Details of the exhaustive
search are found in Supplementary Material.

To foreshadow the results, from 6 to 16 components, the compo-
nents were found to divide into subcomponents as the number of com-
ponents increased, revealing a nested ontology. The nested ontology
suggested that the estimates derived from the different number of cog-
nitive components might provide distinct insights. Because the 12-
component estimate provided additional insights into cognitive control
tasks (see Results), the remaining analyses were performed using the
12-component estimate.

Functional Flexibility
Although the cognitive components were estimated in (MNI152) volu-
metric space, the estimation quality was significantly better in the cere-
bral cortex compared with subcortical structures, likely because of the
relatively large size of the former and inconsistent reporting of the
latter. For example, full coverage of the cerebellum is not always
achieved by typical slice prescriptions. Consequently, the subsequent
analyses will focus on the cerebral cortex.

To quantify the functional flexibility of cortical regions under the
12-component estimate, for each voxel, the number of components with
Pr(voxel | component) at least 1e − 5 was computed (Fig. 6). As previ-
ously discussed, 1e − 5 is a relatively stringent threshold. Since there is
no simple way of determining a threshold, different thresholds were ex-
plored and qualitatively similar results (not shown) were obtained.

The functional flexibility estimate was compared with an estimate
of the multiple-demand (MD) system (Fedorenko et al. 2013; http://
imaging.mrc-cbu.cam.ac.uk/imaging/MDsystem, last accessed Septem-
ber 12, 2014). Both estimates were mapped to the FreeSurfer surface
space. The resulting surface maps were compared by computing the
Pearson’s correlation between them.

Functional Specificity
To explore functional specialization within the cerebral cortex, the
12-component estimate of Pr(voxel | component) was mapped onto
the FreeSurfer surface space, resulting in estimates of the probability
that a component would activate each surface vertex, Pr(vertex | com-
ponent). Nearest neighbor smoothing (1 iteration) of Pr(vertex | com-
ponent) was performed, and Bayes’ rule was used to compute Pr
(component | vertex):

Prðcomponent j vertexÞ/ PrðvertexjcomponentÞPrðcomponentÞ

Given that there is no a priori reason to assume some cognitive compo-
nents are more common than others, Pr(component) was set to be
1/NC. For a given vertex, the ranking of components was therefore the
same for Pr(component | vertex) and Pr(vertex | component). Pr(com-
ponent | vertex) can be interpreted as follows: Given an activation focus
was located at a vertex, Pr(component | vertex) is the probability that a
particular cognitive component was recruited for the activation focus.

For each vertex, the ratio between the top 2 components was com-
puted as a quantitative measure of functional specificity:

Pr ðMost Likely Component atVertex jVertexÞ
Pr ðSecond Most Likely Component atVertexjVertexÞ

A ratio of 2 implied that for a given activated vertex, the top component
would be twice as likely to be recruited as the second most likely

component. A functional specificity of 2 was interpreted as having a
certain degree of functional specialization.

For example, consider a vertex with Pr(C1 | vertex) = Pr(C4 | vertex)
= Pr(C5 | vertex) = 0.1, Pr(C2 | vertex) = 0.2 and Pr(C3 | vertex) = 0.5.
The most and second most likely components for the vertex would be
C3 and C2, respectively. The vertex would have a functional specificity
value of 0.5/0.2 = 2.5, indicating functional specificity.

Ultimately, any operational definition of functional flexibility or
specificity overlooks certain complexities of the model estimates since
12 numbers per voxel (or vertex) are reduced to a single number. Our
model estimates have been made publicly available, allowing other
researchers to explore different specificity and flexibility criteria with
the given estimates.

Statistical Significance of Functional Specificity
The functional specificity measure was computed across the entire
cerebral cortex. To compute the statistical significance, a null distribu-
tion of functional specificity was generated using a Monte-Carlo simu-
lation approach similar to that used in standard meta-analyses (Wager
et al. 2007; Eickhoff et al. 2012). Briefly, a set of 10 449 random experi-
ments was simulated by generating foci coordinates based on the
spatial distribution of foci in the BrainMap database. The spatial distri-
bution of BrainMap foci was used to generate the null distribution, ad-
dressing the non-uniform spatial distribution of foci in the literature
(Poldrack 2011; Behrens et al. 2013; Langer et al. 2014).

The number of foci was matched between corresponding pairs of
real and random experiments. Pr(voxel | component) and correspond-
ing functional specificity were then estimated based on this simulated
set of 10 449 experiments. Each simulated data set allowed the gener-
ation of 299 881 null functional specificity values (corresponding to
the resolution of FreeSurfer surface space). This procedure was re-
peated 100 times to generate a complete null histogram, which was
then used to assign P-values to the original functional specificity
values. False discovery rate was set at q < 0.05, correcting for multiple
comparisons across all vertices representing the cerebral cortex. For
visualization purpose, functionally specialized regions with <20 verti-
ces were removed. Results were transformed and visualized in
PALS-B12 surface space (Van Essen and Dierker 2007).

Alternative Analysis of Functional Specificity
The author-topic model encodes the premise that performing a task re-
cruits multiple cognitive components supported by multiple brain
regions. However, there are multiple mathematical models consistent
with the premise, that is, the choice of model is not unique. To ensure
the functional specificity estimates were robust to the particular model
and estimation procedure, the data were re-analyzed using a simple
procedure that categorized tasks into distinct groups, simulating trad-
itional meta-analyses (Duncan and Owen 2000; Shackman et al. 2011).

For each BrainMap task category (with at least 10 unique studies),
the probability that a task category would activate a particular brain lo-
cation Pr(voxel | task) was computed by averaging the binary activa-
tion images of experiments utilizing only that task category. Contrary
to the author-topic model estimates, Pr(voxel | task) is not a probabil-
ity distribution over voxels and does not sum to 1 over all voxels.
Instead, Pr(voxel | task) is the probability that a voxel is activated in an
experiment utilizing only that task (rather than the probability that a
task would activate a voxel for an activation focus). The Pr(voxel |
task) was transformed onto the FreeSurfer surface space, resulting in
estimates of the probability that a task would activate different surface
mesh vertices Pr(vertex | task). The Pr(vertex | task) was averaged
across the top K tasks of each cognitive component, resulting in an
average probability that the top K tasks of each component would acti-
vate a vertex Pr(vertex | top K tasks).

To foreshadow the results, the functional specificity estimates (pre-
vious section) revealed islands of specificity in lateral frontal and par-
ietal cortex. For this alternative functional specificity analysis, the
islands were extracted as regions of interest (ROIs) resulting in 41
ROIs. Since the value of K was arbitrary, we considered K from 1 to 10.
For each ROI and each component, Pr(vertex | top K tasks) was aver-
aged across the vertices of the ROI. Therefore, for each ROI, it was
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determined whether the component with the highest average Pr
(vertex | top K tasks) was also the mostly likely component according
to the author-topic model.

Resting-State fMRI Data Set
Neuroimaging tasks may reflect an incomplete corpus of cognitive pro-
cesses, and the representation of functional domains is not uniform.
There may also be possible biases due to the non-uniform distribution
of activation foci (Poldrack 2011; Behrens et al. 2013). Consequently,
an independent resting-state fMRI data set was employed to test the
findings from the functional specificity analysis. The data set consists
of 1000 subjects between ages 18 and 35 (mean age = 21.3; 42.7%
male) who underwent 1 or 2 runs of passive eyes open rest scans. Ana-
lyses of the data set have been published previously (Buckner et al.
2011; Yeo et al. 2011; Choi et al. 2012).

Data were acquired on 3 T Tim Trio scanners (Siemens, Erlangen,
Germany) using a 12-channel phased-array head coil. Functional data
consisted of gradient-echo echo-planar images (EPIs) sensitive to
blood oxygenation level-dependent contrast. The EPI parameters were
as follows: repetition time = 3000 ms, echo time = 30 ms, flip angle =
85°, 3 × 3 × 3 mm voxels, field of view = 216, and 47 axial slices col-
lected with interleaved acquisition. Slices were oriented along the AC–
PC plane. Functional runs lasted 6.2 min (124 time points). Structural
data included a multiecho T1-weighted magnetization-prepared
gradient-echo (MP-RAGE) image. More details of the acquisition can
be found elsewhere (Yeo et al. 2011).

Resting-State fMRI Preprocessing
fMRI processing steps included 1) discarding the first 4 frames of each
run, 2) correcting for slice acquisition-dependent time shifts in each
volume with statistical parametric mapping software, and 3) correcting
for head motion using rigid body translation and rotation parameters
(FMRIB software library; Smith et al. 2004). This was followed by
standard functional connectivity preprocessing (Yeoet al. 2011).Briefly,
linear trends over each run were removed and a low-pass temporal
filter retained frequencies of <0.08 Hz. Spurious variance was removed
using linear regression with terms for head motion, whole brain signal,
ventricle signal, white matter signal and their derivatives.

Individual participants’ T1 scans were reconstructed into surface re-
presentations using FreeSurfer (Fischl 2012). Functional data were re-
gistered to structural images using FreeSurfer’s FsFast package (Greve
and Fischl 2009). Functional data were projected onto the FreeSurfer
surface space (2-mm mesh), smoothed on the surface using a 6-mm
full-width half-maximum kernel, and down-sampled to a 4-mmmesh.

Functional Connectivity of Functionally Specific Regions
Each functionally specific island in the cerebral cortex was extracted as
an ROI. The functional connectivity between 2 ROIs was defined as the
Pearson’s correlation between the averaged fMRI time courses of the
ROIs. The correlation was computed for individual subjects and con-
verted into z-values using the Fisher’s r-to-z transformation before
averaging across pairs of ROIs. Two-tailed, paired-sample t-tests (df =
999) tested the hypothesis that cortical regions specialized for the
same cognitive components were more strongly coupled than regions
with different specializations.

Functional Connectivity of Functionally Flexible Regions
A surprising result (see Results) was that many functionally flexible
regions were selective for different cognitive components. The possi-
bility that functional heterogeneity across functionally flexible regions
might relate to distinct connectivity patterns (Goldman-Rakic 1988;
Passingham et al. 2002; Saygin et al. 2012) was further explored.

Cortical vertices with at least 1e − 5 probability of being activated by
2 components (i.e., same criterion as the “Functional Flexibility” section)
were considered. For each functionally flexible vertex and for each
subject, the Pearson’s correlation (functional connectivity) was com-
puted between the vertex’s time course and the averaged fMRI time
courses of each functionally specialized ROI defined in the previous

section. If the functionally flexible vertex overlapped with a functional-
ly specific ROI, the ROI was excluded from the analysis (our operation-
al definitions of flexibility and specificity are not opposite measures.
A flexible region is activated by multiple components with high
probability, whereas a specific region is preferentially activated by
1 component relative to other components. Therefore, flexibility and
specificity are not mutually exclusive by definition. Indeed, there were
some regions that had both a high likelihood of being activated by mul-
tiple components (functionally flexible) and a much higher likelihood
of being activated by a given component than other components (func-
tionally specific). Such occurrences were rare and were generally
located near the borders of specific and flexible zones). The functional
connectivity values were converted into z-values using the Fisher’s
r-to-z transformation before averaging across ROIs specialized for the
same component. This resulted in 12 averaged functional connectivity
values for each vertex and each subject.

To obtain an overall map of correlation between selectivity (Pr(com-
ponent | functionally flexible vertex)) and functional connectivity, the
12 functional connectivity values for each functionally flexible vertex
were averaged across the 1000 subjects and then correlated with Pr
(component | vertex). These correlations were averaged across all
functionally flexible vertices to provide an overall correlation.

Finally, to formally test the hypothesis that functional heterogeneity
across functionally flexible regions might arise from distinct connectiv-
ity patterns, the 12 functional connectivity values for each functionally
flexible vertex were correlated with its selectivity (Pr(component |
vertex)) without averaging across subjects. These correlations were
then averaged across all functionally flexible vertices, and a two-tailed,
one-sample t-test (df = 999) was performed.

Results

Overview
The hierarchical Bayesian model (Fig. 1 and Supplementary Fig.
1) was applied to the BrainMap database (10 449 experimental
contrasts) to obtain cognitive components shared across 83
BrainMap-defined task categories. The utility of this approach
was demonstrated by showing how different motor and cognitive
control tasks recruited overlapping cognitive components, and
how these components comprised of overlapping brain regions.

An important parameter in the model is the number of cogni-
tive components. Therefore, we explored how the estimated
components changed as a function of the number of compo-
nents. As the number of components increased, the components
divided into subcomponents, revealing a nested ontology.

The estimated model parameters were used to compute
maps of functional specificity and flexibility across the cerebral
cortex. An independent resting-state fMRI analysis (N = 1000)
revealed that cortical regions specialized for the same cognitive
components were more strongly coupled than those with
different specializations. Furthermore, functionally flexible
regions possess connectivity patterns consistent with their se-
lectivity for different cognitive components.

12-Component Ontology
The hierarchical Bayesian model (Fig. 1 and Supplementary
Fig. 1) allowed estimation of the probability that each task would
recruit different cognitive components (i.e., Pr(component |
task)) and the probability that each component would activate dif-
ferent voxels (i.e., Pr(voxel | component)). Here, we focus on 12
cognitive components (see “Nested Ontology” for justification).

The 83 BrainMap-defined tasks recruited overlapping cogni-
tive components to varying degrees (Figs. 2a and 3). For ease
of visualization, tasks with similar Pr(component | task) were
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Figure 2. 12-component model estimates. (a) Probability of tasks recruiting different components (i.e., Pr(component | task)). The components, C1 to C12, lie on the top right. The
83 tasks lie in the remaining segments of the circle. Each line connects 1 task with 1 cognitive component. The thickness of the lines is proportional to the magnitude of Pr
(component | task). For the purpose of visualization, tasks with similar Pr(component | task) are more closely positioned and their lines were assigned similar colors. Only lines
corresponding to Pr(component | task) > 1/12 are shown. (b) Probability of components activating different brain voxels (i.e., Pr(voxel | component)). The cerebral hemisphere with
the stronger activation is shown, although most components have high probabilities of bilateral activation. An exception is component C5, which has high probability of activating the
left, but not the right, cerebral cortex. Many components, especially C11 and C12, activate subcortical regions. Component C7 had high probability of activating the brainstem
(Supplementary Fig. 2). The top color bar is utilized for the surface-based visualization of Pr(voxel | component), whereas the bottom color bar is utilized for the volumetric slices
highlighting subcortical structures shown for components C11 and C12. Additional slices highlighting subcortical structures are found in Supplementary Figure 2. (C) indicates
“covert” and (O) indicates “overt”. An interactive version of the model estimates and the unthresholded estimates for 10-component to 14-component estimates are available:
https://surfer.nmr.mgh.harvard.edu/fswiki/BrainmapOntology_Yeo2015, last accessed September 12, 2014.
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placed adjacent to one another (see Methods). Several cogni-
tive components (e.g., C1) were heavily recruited by adjacent
tasks. However, there were also components (e.g., C4) re-
cruited by dispersed clusters of tasks. Therefore, our model
allows for different tasks to recruit common and distinct

cognitive components. The resulting representation extends
models that classify tasks into distinct, non-overlapping groups
(e.g., Laird et al. 2011).

Just as different tasks recruited overlapping cognitive com-
ponents, different components activated common and distinct
brain regions to varying degrees (Fig. 2b and Supplementary
Fig. 2). Each component activated a distributed, but distinct
pattern of brain voxels, spanning multiple cortical lobes
(Fig. 2b) and subcortical structures (Supplementary Fig. 2). No
component appears particularly diffuse (Supplementary Fig. 3).
Therefore, our approach extends models that assume each brain
region belongs to a single category or cluster (e.g., Cieslik et al.
2013; Clos et al. 2013).

A publicly available version of Figure 2 can be used to inter-
actively explore the ontology: https://surfer.nmr.mgh.harvard.
edu/fswiki/BrainmapOntology_Yeo2015, last accessed Sep-
tember 12, 2014. The Pr(component | task) of the top 5 tasks
for each component are shown in Table 1. We will now briefly
discuss each component.

Component C1 had high probability of activating regions
at or near the supplementary motor area (Fig. 2b), the hand
representation in the somato-motor cortex and the hand
representation in the cerebellum (Supplementary Fig. 2a).
The top tasks recruiting C1 were “Vibrotactile Monitoring/
Discrimination,” “Finger Tapping,” and “Grasping.”

Table 1:
Top five tasks recruiting 12 components

Pr(C1 | task) Pr(C2 | task)
Vibrotactile Mon/Discrim 0.9 Recitation/Repetition (O): 0.84
Finger Tapping 0.8 Chewing/Swallowing: 0.61
Grasping 0.71 Reading (Overt): 0.44
Flexion/Extension 0.52 Flexion/Extension: 0.4
TMS 0.39 Music Comp/Production: 0.26
Pr(C3 | task) Pr(C4 | task)
Pitch Mon/Discrim 0.66 Visual Pursuit/Tracking 0.59
Passive Listening 0.62 Action Observation 0.58
Music Comp/Production 0.33 Naming (C) 0.39
Tone Mon/Discrim 0.3 Naming (O) 0.32
Phonological Discrim 0.3 Mental Rotation 0.32
Pr(C5 | task) Pr(C6 | task)
Naming (C) 0.55 Saccades 0.8
Word Generation (C) 0.53 Anti-Saccades 0.72
Semantic Mon/Discrim 0.5 Pointing 0.44
Reading (C) 0.47 Mental Rotation 0.39
Word Generation (O) 0.39 Visual Distractor/Attn 0.28
Pr(C7 | task) Pr(C8 | task)
Micturition 0.68 Flanker 0.49
Pain Mon/Discrim 0.56 Deception 0.45
Acupuncture 0.32 Go/No-Go 0.39
Tactile Mon/Discrim 0.26 Stroop 0.31
Eating/Drinking 0.2 Simon 0.27
Pr(C9 | task) Pr(C10 | task)
WCST 0.59 Theory of Mind 0.55
Counting/Calculation 0.45 Rest 0.39
n-back 0.38 Fixation 0.32
Sternberg 0.37 Naming (O) 0.28
Task Switching 0.33 Acupuncture 0.28
Pr(C11 | task) Pr(C12 | task)
Face Mon/Discrim 0.67 Reward Task 0.57
Subj Emo Pict Discrim 0.49 Olfactory Mon/Discrim 0.39
Olfactory Mon/Discrim 0.41 Eating/Drinking 0.35
Passive Viewing 0.37 Classical Conditioning 0.23
Classical Conditioning 0.32 Paired Associate Recall 0.16

Notes: Only the top 5 tasks for each cognitive component are shown. Unthresholded and unfiltered
model estimates for 10 to 14 components are publicly available: https://surfer.nmr.mgh.harvard.
edu/fswiki/BrainmapOntology_Yeo2015, last accessed September 12, 2014. “(C)” and “(O)”
indicate “covert” and “overt” respectively. “Mon”, “Discrmin” and “Attn” are short for “monitoring”,
“discrimination” and “attention” respectively. “Subj Emo Pict Discrimin” is short for “Subjective
Emotional Picture Discrimination”.

Figure 3. Alternative visualization of the probability of tasks recruiting different
components Pr(component | task). For the purpose of visualization, tasks with similar
Pr(component | task) are more closely positioned. Due to space constraints, only 51
tasks are shown (see Methods). (C) = Covert; (O) =Overt.
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Component C2 had high probability of activating regions at
or near the supplementary motor area (Fig. 2b), the face re-
presentation in the somato-motor cortex and the face repre-
sentation in the cerebellum (Supplementary Fig. 2a). The top
tasks recruiting C2 were “Overt Recitation/Repetition,”
“Chewing/Swallowing,” and “Overt Reading.”

Component C3 had high probability of activating the audi-
tory cortex, as well as the posterior medial frontal cortex and
inferior frontal gyrus (IFG). The top tasks recruiting C3 were
“Pitch Monitoring/Discrimination,” “Passive Listening,” and
“Music Comprehension/Production.”

Component C4 had high probability of activating the occipital
lobe, as well as the inferior temporal cortex and superior parietal
cortex. The top tasks recruiting component C4 were “Visual
Pursuit/Tracking,” “Action Observation,” and “Covert Naming.”

Component C5 had high probability of activating the poster-
ior medial frontal cortex, IFG, posterior lateral frontal cortex,
as well as the superior parietal cortex, temporal cortex, and
cerebellum. The activation pattern was left lateralized in the
cerebral cortex (Fig. 2b) and right lateralized in the cerebellum
(Supplementary Fig. 2a). The top tasks recruiting component
C5 were “Covert Naming,” “Covert Word Generation,” and
“Semantic Monitoring/Discrimination.”

Component C6 had high probability of activating the poster-
ior medial frontal cortex, superior parietal cortex, and
the junction of the superior frontal and precentral sulci, which
is at or near the human homolog of the frontal eye fields
(Koyama et al. 2004). The activations associated with C6 over-
lapped significantly with brain regions associated with visual
spatial attention (Corbetta et al. 2008; Szczepanski et al. 2010).
The top tasks recruiting component C6 were “Saccades,” “Anti-
Saccades,” and “Pointing.”

Component C7 had high probability of activating the insula,
frontal operculum, parietal operculum, and the brain stem
(Supplementary Fig. 2b). The top tasks recruiting component
C7 were “Micturition,” “Pain Monitoring/Discrimination,” and
“Acupuncture.”

Component C8 had high probability of activating the anterior
mid-cingulate cortex, posterior medial frontal cortex, anterior
insula, anterior lateral PFC, as well as the temporoparietal junc-
tion. The top tasks recruiting component C8 were “Flanker,”
“Deception,” and “Go/No-Go.”

Component C9 had high probability of activating the super-
ior parietal cortex, intraparietal sulcus, lateral PFC, anterior
insula, and posterior medial frontal cortex. The top tasks re-
cruiting component C9 were “Wisconsin Card Sorting Test,”
“Counting/Calculation,” and “n-back.”

Component C10 had high probability of activating the pos-
terior cingulate cortex, precuneus, posterior hippocampal for-
mation, medial PFC, inferior parietal cortex, temporal cortex,
and the temporoparietal junction. The activations associated
with C10 overlapped significantly with the default network
(Buckner et al. 2008). The top tasks recruiting component C10
were “Theory of Mind,” “Rest,” and “Fixation.”

Component C11 had high probability of activating the anter-
ior hippocampus, amygdala (Supplementary Fig. 2c), as well
as the posterior cingulate cortex and medial PFC. The top
tasks recruiting component C11 were “Face Monitoring/
Discrimination,” “Subjective Emotional Picture Discrimin-
ation,” and “Olfactory Monitoring/Discrimination.”

Component C12 had high probability of activating the
ventral striatum (Supplementary Fig. 2d), anterior insula, and

ventral medial frontal cortex. The top tasks recruiting
component C12 were “Reward Task,” “Olfactory Monitoring/
Discrimination,” and “Eating/Drinking.”

The topography of subcortical activation was generally
consistent with known subcortical organization and the top
tasks recruiting each component (Supplementary Fig. 2). For
example, components C1, C2, and C5 activated distinct cerebel-
lar territories from anterior to posterior (Supplementary Fig. 2a),
consistent with known cerebellar organization (Stoodley and
Schmahmann, 2009). This result provides additional details that
extend previous meta-analytic approaches (Smith et al. 2009;
Laird et al. 2011), which extracted the entire cerebellum as a
single component. While the subcortical activation patterns in-
creased our confidence in the component estimates, the estima-
tion quality was significantly better in the cerebral cortex
because the subcortical structures are much smaller and often
neglected in functional experiments. For example, the posterior
cerebellum is often omitted in fMRI data acquisition. Conse-
quently, the functional specificity and flexibility analyses focused
only on the cerebral cortex.

In describing the 12 components, we have refrained from
explicitly labeling the cognitive components in order to not
bias the readers’ interpretation. Some labels would likely be
uncontroversial. For instance, there would probably be agree-
ment that tasks involving touch or hand movement are likely
to recruit C1, which could therefore be labeled as somatosen-
sory/motor. However, other components may have several
possible interpretations. For example, the top tasks recruiting
component C8 were “Flanker,” “Deception,” and “Go/No-Go.”
One interpretation is that C8 might be associated with tasks re-
quiring inhibition of pre-potent responses (Miyake et al. 2000).
However, the component can also reasonably be tagged as “re-
sponse conflict” (Duncan and Owen 2000). Conventional task-
based experiments, rather than meta-analyses, are more appro-
priate for disambiguating such differences in interpretation.

Shared and Divergent Components of Tasks Involving
Motor Processing
While the previous subsection focused on tasks strongly asso-
ciated with individual components (i.e., columns of Fig. 3), it
is also instructive to consider the shared and divergent compo-
nents recruited across tasks (i.e., rows of Fig. 3). To demon-
strate how our approach might reveal the relationships among
different tasks, the differential recruitment of cognitive compo-
nents by 4 BrainMap-defined motor-related tasks—“Pointing,”
“Finger Tapping,” “Saccades,” and “Anti-Saccades”—was ex-
plored (Fig. 4a). The 4 tasks were chosen for illustration and
are not meant to be exhaustive of all tasks that involve motor
processing. Other examples can be readily found by examining
Figure 3 and the publicly available model estimates.

Shared and Divergent Components of Tasks Involving
Cognitive Control
We considered the differential recruitment of cognitive compo-
nents by 8 BrainMap-defined cognitive control tasks. The choice
of tasks was again not meant to be exhaustive but rather to illus-
trate shared and divergent components recruited across com-
monly used cognitive control tasks. Our 12-component estimate
indicated that these tasks heavily recruited components C4, C5,
C6, C8, and C9 to different degrees (Fig. 4b). Components C8
and C9 were the most heavily recruited.
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Figure 4. Shared and divergent components of tasks involving motor processing or cognitive control. (a) Shared and divergent components of tasks involving motor processing. The
4 motor-related tasks have high probability of recruiting components C1, C6, and C8. Each line connects 1 task with 1 component. The thickness and brightness of the lines are
proportional to the magnitude of Pr(component | task). The 3 tasks most likely to recruit these components are shown on the right. The numbers in the brackets correspond to Pr
(component | task); the numbers can add up to >1 because we are showing Pr(component | task) and not Pr(task | component). The “Pointing” task recruited components C1
and C6. The “Anti-Saccade” task recruited components C6 and C8. (b) Shared and divergent components of tasks involving cognitive control. Format follows (a). The 8 cognitive
control tasks have high probability of recruiting components C4, C5, C9, C8, and C6. Components C8 and C9 were the most heavily recruited components. Wisconsin Card Sorting
Test (WCST), n-back, Delayed Match-to-Sample (DMTS), and Sternberg preferentially recruited component C9, whereas Go/No-Go, Stroop, and Flanker preferentially recruited
component C8.
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Nested Ontology
An important model parameter is the number of cognitive
components. Cross-validation was used to quantify the model
generalization power as a function of the number of cognitive
components. Generalization power was flat from 8 to 14 com-
ponents (Fig. 5a).

We explored the possibility that components divided into sub-
components as the number of components increased from 2 to
20. The correlation values in Supplementary Figure 4 suggest that
from 6 to 16 components, additional components emerged as sub-
divisions of lower-order components, corresponding to a nested
ontology. Examples from 10 to 14 components are illustrated
(Fig. 5b and Supplementary Fig. 5; Supplementary Table 1).

The flat generalization power and nested ontology suggest
that estimates derived from different numbers of cognitive com-
ponents might provide distinct insights. Indeed, in the 11-com-
ponent estimate, components C8 and C9 from the 12-component
estimate were merged as a single component (Supplementary
Fig. 5b; Supplementary Table 1). Given the additional insights

that C8 and C9 provide about cognitive control tasks (previous
subsection), we focus on the 12-component estimate in the re-
maining portion of this paper. Model estimates for 10 to 14 com-
ponents are publicly available.

Functionally Flexible Regions Are Functionally
Heterogeneous
To quantify the functional flexibility of cortical regions, the
number of components where Pr(voxel | component) ≥1e − 5
was computed for each voxel (Fig. 6). Experiments with other
thresholds than 1e − 5 yielded similar results, that is, func-
tionally flexible regions were consistently located in the
frontal and parietal lobes, including anterior insula, anterior
mid-cingulate cortex, intraparietal sulcus, superior parietal
lobule, and posterior (medial and lateral) frontal cortex.
Furthermore, an alternative measure of functional flexibility
(unnormalized entropy) resulted in a very similar map (Sup-
plementary Fig. 6; r = 0.88).

The set of flexible regions we identified overlapped con-
siderably (r = 0.45; P ≈ 0) with the MD system (Supple-
mentary Fig. 7; Duncan 2013; Fedorenko et al. 2013).
However, the present results also suggest that these func-
tionally flexible regions are functionally heterogeneous. For
example, the top 4 components activating a left anterior
insular/opercular (aIns/Oper) region were C8, C5, C12, and
C7, whereas the top 4 components activating a left anterior in-
traparietal sulcal (aIPS) region were C9, C1, C4, and C6
(Fig. 6). Therefore, the 2 regions were flexible for completely
different components.

Figure 5. Number of cognitive components. (a) Generalization power plotted as a
function of the number of estimated cognitive components. Generalization power is flat
from 8 to 14 components. (b) Illustration of the division of visual component into dorsal
and ventral visual streams as the number of estimated components was increased
from 12 to 13. Here, component 12C4 had high likelihood of activating occipital,
superior parietal, and inferior temporal cortices. In contrast, component 13C4 had high
likelihood of activating occipital and inferior temporal cortices, whereas component
13C5 had high likelihood of activating occipital and superior parietal cortices. The
average of the Pr(voxel | component 13C4) and Pr(voxel | component 13C5) is strongly
correlated with Pr(voxel | component 12C4) (see Supplementary Fig. 4), suggesting
that the 13-component estimate arises from the subdivision of component 12C4 into
components 13C4 and 13C5. This “nested ontology” phenomenon was observed for the
flat part of the generalization power curve and in fact beyond it from 6 to 16
components. The flat generalization power and nested ontology suggest that estimates
with different number of cognitive components might provide distinct insights into the
organization of cognitive components. See Supplementary Figure 4 for quantification of
the nested ontology. Supplementary Figure 5 and Table 1 illustrate other component
fractionations.

Figure 6. Functional heterogeneity within functionally flexible regions. The figure
shows cortical regions participating in multiple cognitive components of the
12-component estimate. Functionally flexible regions were mostly located in the frontal
and parietal lobes. These functionally flexible regions are functionally heterogeneous.
For example, the top 4 components activating an anterior insula/operculum (aIns/Oper)
region (−34, 16, −2) were C8, C5, C12, and C7, with corresponding Pr(component |
aIns/Oper) equal to 0.20, 0.19, 0.17, and 0.15, respectively. In contrast, the top 4
components activating an aIPS region (−45, −43, 43) were C9, C1, C4, and C6, with
corresponding Pr(component | aIPS) equal to 0.23, 0.21, 0.16, and 0.13, respectively.
There was heterogeneity even within a functionally flexible zone, for instance across
the IPS. For example, in contrast to aIPS, the top 4 components activating a pIPS
region (−26, −63, 45) were C9, C5, C6, and C4, with corresponding Pr(component |
pIPS) equal to 0.36, 0.24, 0.20, and 0.08, respectively. The Desikan–Killiany atlas
(Desikan et al. 2006) was used to guide the labeling of the regions aIns/Oper, aIPS, and
pIPS.
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Even neighboring regions showed such differences. For
example, the top 4 components activating a left posterior intra-
parietal sulcal (pIPS) region were C9, C5, C6, and C4 (Fig. 6).
Therefore, while both aIPS and pIPS regions were functionally
flexible for similar components, they still exhibited distinct
functional profiles.

One caveat is that the functional flexibility inferences are
likely overestimates because of inter-subject and inter-study
smoothing inherent to coordinate-based meta-analyses. For
example, there were hints of functional differentiations within
posterior medial frontal cortex (Supplementary Fig. 8) that
were not obvious in other functionally flexible regions. In con-
trast, functional specificity inferences in the next section are
likely underestimates.

Islands of Specialization throughout Association Cortex
To explore functional specialization with respect to the identi-
fied components, the functional specificity measure was com-
puted for the entire cerebral cortex (Supplementary Fig. 9). We
focus here on the interpretation of lateral frontal (Fig. 7) and
parietal (Fig. 8) cortices. Only regions with statistically signifi-
cant (FDR-corrected q < 0.05) functional specificity of at least 2
are shown.

Lateral Frontal Specialization
The somato-motor and auditory cortices exhibited significantly
higher functional specificity than the lateral frontal cortex.
Nevertheless, 7 components exhibited significant specificity in
the lateral frontal cortex (Fig. 7), demonstrating considerable
functional segregation within this region.

Multiple zones selective for either component C8 or C9 po-
pulated large portions of lateral frontal cortex, extending from
posterior frontal regions to the frontal pole. As discussed in the
previous sections, components C8 and C9 were heavily re-
cruited by cognitive control tasks.

The right IFG and frontal operculum were specific for com-
ponent C8, whereas the left IFG was specific for component
C5. The junction between the precentral and superior frontal
sulci was specific for component C6. Finally, the most dorsal
aspect of left lateral frontal cortex was functionally specific for
components C10 and C11.

Lateral Parietal Specialization
Seven components exhibited significant specificity in the
lateral parietal cortex (Fig. 8). The 7 components overlapped
with, but were not the same as those in lateral frontal cortex. In
particular, bilateral intraparietal sulci were specialized for com-
ponent C9, but only a small region in the left parietal opercu-
lum was specialized for component C8. Therefore, only 1 of
the 2 major cognitive control components was strongly an-
chored in lateral parietal cortex.

Other specializations include component C10 in the inferior
parietal cortex and component C6 in the superior parietal
cortex. There were also small regions in right superior parietal
cortex specialized for components C1, C4, and C7. Regions in

Figure 7. Functional specificity in lateral frontal cortex for the 12-component
estimate. A functional specificity value of 2 at a vertex implies that for an activated
vertex, the top component would be twice as likely as the second most likely
component to be recruited. Therefore, a functional specificity of 2 suggests at least
some degree of functional specialization. Only regions with statistically significant
(corrected for multiple comparison for entire cerebral cortex, FDR q< 0.05) functional
specificity of at least 2 are shown. The somato-motor cortex exhibited higher
functional specificity than the lateral frontal cortex. Nevertheless, 7 components
exhibited significant specificity, demonstrating functional segregation in lateral frontal
cortex. Note that the color scale is logarithmic.

Figure 8. Functional specificity in lateral parietal cortex for the 12-component
estimate. Format follows Figure 7. The somato-motor and auditory cortices exhibited
higher functional specificity than the lateral parietal cortex. Nevertheless, 7
components exhibited significant specificity, demonstrating functional segregation in
lateral parietal cortex.
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the parietal operculum and anterior inferior parietal cortex
were specialized for component C7.

The functional specificity measure proposed here aimed
to capture the notion that specificity implies some degree of
functional exclusion. A region specific for a particular function
X implies that the region is involved in function X more than
some other function Y. Therefore, the functional specificity
measure is also somewhat conservative. For example, some
might consider a voxel activated by 2 components with equal
probability of 0.5 to be functionally specific. Our quantitative
measure does not consider such a voxel to be functionally
specific.

Given that the functional specificity measure is a ratio of the
most likely and second most likely component, one might be
concerned that a region whose most likely component is rather
improbable may be considered functionally specific if the
second most likely component is even less improbable, such as
the probability of the most likely component is 0.2 and the
probability of the second most likely component is 0.1. Such
cases are rare. Indeed, the map corresponding to the highest
Pr(component | voxel) is very similar to the functional specifi-
city estimate (r = 0.89).

Functional Specificity Estimates Are Robust
to Analysis Choices
To ensure that the functional specificity estimates were robust,
the data were re-analyzed using a simple procedure (see
Methods), which simulated traditional meta-analyses (e.g.,
Duncan and Owen 2000; Shackman et al. 2011) that categor-
ized tasks into distinct groups a priori. Briefly, we computed
the probability that the top K tasks of each component would
activate each cortical vertex: Pr(vertex | top K tasks). The
islands of specificity in lateral frontal and parietal cortices
(Figs. 7 and 8) were then used as ROIs to determine, for each
ROI, whether the component identified in the previous ana-
lysis matched the component with the highest Pr(vertex | top
K tasks) within the ROI.

This analysis ignored the possibility that tasks within the
same group might recruit distinct processes (in addition to
common processes) or that tasks in different groups might
share common processes. For example, since “Covert Naming”
is one of the top 4 tasks recruiting components C4 and C5
(Table 1), activation foci from “Covert Naming” studies will be
counted toward both components for values of K from 4 to 10.
In contrast, under our model (Fig. 1), activation foci from
“Covert Naming” studies will be shared among components
C4, C5, and other components recruited by “Covert Naming.”
More importantly, the Pr(vertex | top K tasks) was computed
per vertex (see Methods) and therefore does not sum to 1 over
the brain. This is in contrast to Pr(voxel | component) esti-
mated by the author-topic model, which sums to 1 over all
voxels. Given the above-mentioned differences, agreement
with the author-topic model is not obligate.

We initially performed this analysis for K = 5. For 29 of the
41 functionally specific lateral frontal and parietal ROIs, the
most likely component (as identified in Figs. 7 and 8) had the-
highest Pr(vertex | top 5 tasks) within the respective ROIs.
For 6 of the remaining 12 ROIs, the most likely component
had the second highest Pr(vertex | top 5 tasks). Therefore,
our quantitative functional specificity measure and this analysis
(Supplementary Fig. 10) were highly consistent (P < 1e− 5),

indicating that the functional specificity estimates accurately re-
flected the BrainMap data. Repeating the analysis with differ-
ent values of K yielded similar results. For 37 of the 41 ROIs,
the most likely component identified by the author-topic
model had the highest Pr(vertex | top K tasks) for at least
one value of K.

Regions Specialized for the Same Cognitive Components
Are Strongly Connected
The above-mentioned results suggest that the functional speci-
ficity estimates likely reflect true properties of the BrainMap
database. As the distribution of activation foci and tasks is non-
uniform, a separate resting-state fMRI analysis was employed,
which does not suffer from this bias. Importantly, the resting-
state analysis was performed on a surface coordinate system
without any volumetric smoothing. This also alleviates concerns
that the complex pattern of functional specificity may have arisen
from the smoothing of activation results across cortical folds.

We first tested the hypothesis that cortical regions specia-
lized for the same cognitive components would be more
strongly coupled than those specialized for different compo-
nents. Because of their complex pattern, the lateral frontal
regions specialized for components C8 and C9 constituted a
challenging test set (Fig. 9a). Resting-state correlations among
lateral frontal islands specialized for component C8 were stron-
ger than their correlations with lateral frontal islands specia-
lized for component C9 (P < 1e− 184). Similarly, functional
coupling among lateral frontal islands specialized for compo-
nent C9 was stronger than their coupling to lateral frontal
islands specialized for component C8 (P < 1e− 75).

Furthermore, across the entire cerebral cortex, functional
coupling among cortical regions specialized for the same com-
ponent was stronger than among those specialized for differ-
ent components (P ≈ 0). Therefore, the cognitive components
reflect meaningful brain organization, which persists even in
the resting state (also see Smith et al. 2009; Mennes et al. 2013;
Krienen et al. 2014). These results also suggest that regions
specialized for the same component function as functionally
coupled networks, partially isolated from other components.

Connectivity Patterns Predict the Functional
Heterogeneity of Flexible Regions
We next tested the hypothesis that functional heterogeneity
across functionally flexible regions might relate to distinct con-
nectivity patterns (Goldman-Rakic 1988; Passingham et al.
2002; Saygin et al. 2012). The resting-state functional connect-
ivity between each functionally flexible region and other fun-
ctionally specialized regions varied proportionally to the
probability of the individual components activating the func-
tionally flexible region (average r = 0.75, P ≈ 0; Fig. 9b). In
other words, a functionally flexible region with high likelihood
of being activated by component X tends to exhibit strong
coupling with other regions specialized for component X.
Therefore, functionally flexible regions might serve to inte-
grate information from the specialized regions of one or more
components.

Discussion

By employing a novel data-driven approach on one of the
largest meta-analytic data sets available, we estimated a latent
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cognitive structure and its cortical topography without a priori
categorization of tasks. Our results suggest a complex pattern
of functionally specialized and flexible regions distributed
across association cortex. In follow-up analyses using resting-
state data, regions functionally specialized for the same com-
ponents were found to be strongly coupled, suggesting they
function as partially isolated networks. Functionally flexible
regions are heterogeneous, that is, they support multiple com-
ponents, but each does so to different degrees. This heteroge-
neous selectivity of the flexible regions is predicted by the

functional coupling between flexible and specialized regions.
One possibility is that functionally flexible regions support
binding or integrating specialized brain networks that, in turn,
contribute to the execution of multiple and varied tasks.

Nested Latent Cognitive Structure
A core result in this work is the estimation of a set of latent
cognitive components that underlie the patterns of brain acti-
vation observed in task-based functional imaging studies.

Figure 9. Intrinsic organization of functionally specialized and flexible regions. (a) Regions specialized for the same cognitive components are strongly connected. Yellow regions
correspond to lateral frontal zones specialized for component C8. Red regions correspond to lateral frontal zones specialized for component C9. Functional coupling among lateral
frontal zones specialized for component C8 was stronger than their coupling with zones specialized for component C9 (P< 1e− 184). Similarly, functional coupling among lateral
frontal zones specialized for component C9 was stronger than their coupling with zones specialized for components C8 (P<1e− 75). Therefore, components function as isolated
specialized networks. Asterisks indicate the statistical tests performed. (b) Connectivity patterns of functionally flexible regions are correlated with their selectivity for cognitive
components. (bi) The colored regions are functionally flexible for at least 2 components (c.f. Fig. 6). The overlay corresponds to the correlation between the selectivity (Pr
(component | functionally flexible region)) and the functional connectivity of the functionally flexible region and specialized regions of individual components. Average correlation
across all functionally flexible regions = 0.75 (P ≈ 0). The high positive values suggest that a functionally flexible region with high likelihood of being activated by component X tends
to have stronger connectivity with regions specialized for component X. (bii–iv) Example scatterplots for the 3 functionally flexible regions from Figure 6: (bii) aIns/Oper, (biii) aIPS, and
(biv) pIPS. Therefore, the connectivity patterns of functionally flexible regions were consistent with their selectivity to individual cognitive components. Flexible regions might
integrate information from isolated specialized networks.
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Different tasks recruited overlapping cognitive components,
and different components activated common and distinct brain
regions across distributed cortical and subcortical structures.
Cortical regions with the same specialization were strongly
coupled, functioning as a distributed but coherent component.
These observations bolster the proposal that the relevant units
of brain function are networks of brain regions (Goldman-
Rakic 1988; Mesulam 1990; McIntosh 2000; Yeo et al. 2011).
While differentiated functions among regions of the same cog-
nitive component are expected, this perspective emphasizes
that complex brain functions arise from emergent network
properties.

The model used here requires specifying the number of com-
ponents. Analysis revealed a nested ontology of components
across different solutions. For example, the 12-component esti-
mate of C4 (12C4) divided into the 13-component estimates of C4
(13C4) and C5 (13C5). The remaining 11 components were
almost identical across the 2 solutions. The average correlation
value for this hypothesized split was 0.95 (Supplementary
Fig. 4) indicating the subdivision was excellent. Based on the ac-
tivation patterns (Fig. 5b) and the top tasks likely to recruit the
components (Supplementary Table 1), the fractionation of com-
ponent 12C4 into components 13C4 and 13C5 may reflect the seg-
regation of visual processing into dorsal and ventral visual
streams. Therefore, the nested ontology revealed meaningful
fractionations of components.

We recognize that the estimated ontology is a “conditional
ontology” because the components we describe are those that
can be discovered through applying the author-topic model to
the BrainMap database and the associated paradigm classes.
An important feature of this work is that it reveals the cognitive
structure and network properties through the probabilistic use
of an existing (fairly informal) taxonomy (paradigm classes)
and their respective activation patterns. That the resting-state
analyses were able to corroborate properties of these patterns
helps to validate the approach.

Shared and Divergent Components across Task
Categories
The identification of tasks that had a high probability of activat-
ing each component provides quantitative insight into the pu-
tative function or process of each component (Figs. 2a and 3;
Table 1). Critically, the model revealed relationships among
different sets of tasks. We next consider two examples from
different domains.

Shared and Divergent Components of Tasks Involving Motor
Processing
The differential recruitment of cognitive components by 4
BrainMap-defined motor tasks (“Pointing,” “Finger Tapping,”
“Saccades,” and “Anti-Saccades”) was explored (Fig. 4a). We
have previously suggested that component C1 is involved in
touch or hand motion, and component C6 is involved in eye
movement or spatial attention. The “Pointing” task recruited
components C1 and C6, consistent with the notion that point-
ing at an object involves hand-eye coordination. The “Anti-
Saccade” task requires suppressing the pre-potent response
driven by the visual cue and making a saccade in the opposite
direction. The recruitment of component C8 (in addition to C6)
by the “Anti-Saccades” task is consistent with the notion that
component C8 is related to inhibition of pre-potent responses
(Miyake et al. 2000) or response conflict (Duncan and Owen

2000). Thus, “Anti-Saccade” differs from “Pointing,” “Finger
Tapping,” and “Saccades” by additionally recruiting a non-
motor component.

Shared and Divergent Components of Tasks Involving
Cognitive Control
Since the association cortex plays an important role in cogni-
tive control operations (Dosenbach et al. 2006; Corbetta et al.
2008; Duncan 2013), the differential recruitment of cognitive
components by 8 BrainMap-defined cognitive control tasks
was considered. These tasks heavily recruited components C4,
C5, C6, C8, and C9 (Fig. 4b). The most heavily recruited com-
ponents were C8 and C9. As mentioned earlier, C8 might be
related to inhibition or response conflict. Consistent with this
hypothesis, the “Stroop” task preferentially recruited compo-
nent C8 relative to C9 (Fig. 3). Component C9 was most strong-
ly associated with “Wisconsin Card Sorting Test,” “Counting/
Calculation,” and “n-back,” suggesting a link to tasks engaging
working memory. Consistent with this speculation, “Stern-
berg” and “Delayed Match to Sample” tasks preferentially re-
cruited C9 relative to C8 (Fig. 3). All 5 components had high
probability of activating distinct portions of the association
cortex, hinting at functional specialization. Overlapping activa-
tion between components was also evident, suggesting the
presence of functionally flexible regions, at least at the reso-
lution of our derived components.

The differential recruitment of C8 and C9 echoes previous
data-driven dissociation of cognitive control processes (e.g.,
Miyake et al. 2000; Dosenbach et al. 2007; Lenartowicz et al.
2010). However, alternative interpretations are possible. For
example, the activation pattern of component C8 resembles the
cinguloopercular network, thought to be involved in the stable
maintenance of task sets, whereas the activation pattern of com-
ponent C9 resembles the frontoparietal network that might be
involved in adaptive online control (Dosenbach et al. 2007).

A Spectrum of Specialization and Flexibility across
Association Cortex
While association cortex has long been known to underpin
flexible behavior, the ontology of cognitive functions and their
instantiation in the brain continues to be elaborated. For
example, whether the left inferior frontal cortex participates
exclusively in linguistic semantic processes or instead supports
domain-general functions remains an active topic of investiga-
tion (Thompson-Schill et al. 1997; Wagner et al. 2001; Gold
and Buckner 2002; Devlin et al. 2003; Koechlin et al. 2003;
Badre et al. 2005; Fedorenko et al. 2012; Clos et al. 2013). More
broadly, it has been proposed that certain prefrontal and par-
ietal regions possess flexible processing capabilities and may
be recruited across multiple “cognitive demands” (Duncan
2001; Wise 2008; Cromer et al. 2010; Fitzgerald et al. 2011;
Duncan 2013; Rigotti et al. 2013).

Several frontal and parietal regions were activated by mul-
tiple cognitive components, consistent with reports emphasiz-
ing prefrontal and parietal flexibility (Duncan 2001; Spreng
et al. 2010; Cole et al. 2013; Duncan 2013; Fedorenko et al.
2013). These flexible regions included the intraparietal sulcus,
which contained an anterior region involved in at least 4 cogni-
tive components, as well as the anterior insula/operculum, su-
perior parietal lobule, and posterior frontal cortex.

Conversely, highly specialized zones were also distributed
throughout frontal and parietal cortices, compatible with
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some functional attribution studies (e.g., Aron et al. 2004;
Fedorenko et al. 2012). For example, both left SPL and IFG
were highly specialized with Pr(C6 | left SPL) ≈ 0.9 and Pr(C5
| left IFG) ≈ 0.6.

Other regions exhibited intermediate specialization. For
example, the right IFG appears moderately specialized with Pr
(C8 | right IFG) ≈ 0.4 (functional specificity measure ≈ 3). As
another example, a moderately flexible region within left pos-
terior lateral frontal cortex was associated with C5 and C9: Pr
(C5 or C9 | left posterior lateral frontal cortex) ≈ 0.6.

In considering our results, there are important caveats. The
inter-subject and inter-study smoothing inherent to coordinate-
based meta-analyses likely bias the present flexibility and
specificity metrics in opposite ways. Flexibility could be over-
estimated if adjacent, differentially specialized regions were
smoothed together. This could further impact the findings re-
garding the functional heterogeneity of flexible regions if
these regions are adjacent to neighbors with different speciali-
zations. In contrast, functional specificity inferences are likely
underestimates. The independent resting-state analysis utilizes
surface-based registration that partially mitigates the effect of
inter-study smoothing and minimizes inter-subject variability
compared with volumetric registration (Fischl et al. 2008; Yeo
et al. 2010; Van Essen et al. 2012). Nevertheless, within-subject
multi-task analyses (e.g., Fedorenko et al. 2012) will be neces-
sary to assess the impact of smoothing on metrics for flexibility
and specificity.

By aggregating evidence across thousands of experiments,
our meta-analysis reveals multiple association zones ranging
from being highly specialized to highly flexible. Our data
suggest some properties of these zones but leave unanswered
the broader question of how they form or whether there are sim-
plifying organizational principles to the complex topography.

Integrated versus Segregated Processing
Since cortical regions specialized for distinct components were
weakly coupled, a critical issue concerns how information is
integrated across components. We found that flexible regions
were more strongly coupled in the resting state to specialized
regions of those cognitive components they were likely to par-
ticipate in, suggesting that the functionally flexible regions
may play important integrative roles. The interactions within
and between components may enable the human association
cortex to facilitate or perform a multitude of different cognitive
tasks.

An influential perspective of information processing in the
primate cerebral cortex is that of sensory information elabo-
rated and refined by a processing hierarchy (Ungerleider and
Desimone 1986; Felleman and Van Essen, 1991). Streams of in-
formation from different sensory modalities converge upon
and receive feedback from heteromodal association cortex,
where they are integrated to create coherent experience and
drive behavior (Mesulam 1998). Consequently, one might
expect many association regions to be linked with or display
mixed selectivity to multiple cognitive domains (Rigotti et al.
2013). Other association regions may be largely nonspecific to
sensory domains (Buckner and Krienen 2013). Consistent with
these perspectives, our results suggest that the association
cortex is less functionally specific than sensory cortex and that
functionally flexible regions are largely located in association
cortex (also see Yeo et al. 2014).

The pioneering work of Pandya and Kuypers (1969) and
Jones and Powell (1970) established the anatomical basis for
viewing PFC as the terminus of a variety of sensory afferents.
Notably, they did not find a single PFC region where the full di-
versity of sensory streams converge (Goldman-Rakic 1988).
The present results are consistent with their analyses. While
there were functionally flexible zones in association cortex,
the flexible regions were functionally heterogeneous. More-
over, functionally specific zones were apparent within associ-
ation cortex. The observed spectrum of specificity reinforces
the notion that the moniker “association cortex” does not de-
scribe a uniform computational entity. The degree of special-
ization may vary considerably between distinct regions of
association cortex, and functional models should consider this
heterogeneity.

Association cortex that is functionally specialized in some
parts while heterogeneous and functionally flexible in others
may reconcile prominent frameworks offered previously. In
particular, distributed and segregated information processing
may not be incompatible with hierarchical and integrative pro-
cessing (Goldman-Rakic 1988; Mesulam 1998; Power et al.
2011; Yeo et al. 2011, 2014; Buckner and Krienen 2013). The
flexible association regions might support a core processing
capacity by binding or integrating segregated brain networks
specialized for distinct functions (also see Damasio 1989;
Bassett et al. 2013; Markov et al. 2013).

A Heterogeneous, Multi-Functional Brain System
Our analyses revealed a set of functionally flexible regions that
have been implicated in a multitude of functions (Menon and
Uddin 2010; Shackman et al. 2011) and may play important in-
tegrative roles (Miller and Cohen 2001; Duncan 2013; Shenhav
et al. 2013). In terms of spatial overlap, the flexible regions
were consistent with the MD system (Duncan 2013; Fedorenko
et al. 2013).

Fedorenko et al. (2013) demonstrated that the MD regions
are activated across diverse task domains (“Math,” “Spatial
Working Memory,” “Verbal Working Memory,” “Stroop,”
“Verbal MSIT,” and “Numeric MSIT”). Based on Figure 3, the
tasks employed by Fedorenko et al. (2013) likely recruited 2
(C8 and C9) of our 12 components to different degrees. As
such, our meta-analysis permits an expanded assessment of
the cognitive domains associated with the MD system (Fig. 6).
For example, a functionally flexible region within intraparietal
sulcus supports component C9, but not C8. Conversely, a func-
tionally flexible region near the anterior insula/operculum
supports component C8, but not C9.

Functionally flexible regions can differ in the assortment of
functions with which they associate. For example, an intrapar-
ietal sulcal region and an anterior insular/opercular region
were associated with different cognitive components. In add-
ition, there were variations in functional profiles even within a
flexible zone (e.g., within intraparietal sulcus). Hence, the MD
system, while serving multiple functions, might itself be func-
tionally heterogeneous (also see Hampshire et al. 2012).

Such heterogeneity presumably arises, in part, from distinct
connectivity profiles across the MD regions (Passingham et al.
2002). One possibility is that the flexible regions may be per-
forming similar functions, but differences among regions may lie
in the nature of the information being operated upon (Goldman-
Rakic 1988). Consistent with this hypothesis, the flexible regions
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were more strongly coupled to specialized regions of those cog-
nitive components that they were likely to participate in. This
tight relationship between selectivity and connectivity across
large expanses of the cerebral cortex extends previous work
focusing on fusiform cortex (Saygin et al. 2012).

Our model does not allow differentiation between existing
functional accounts of the functionally flexible regions. For in-
stance, Duncan (2010) suggests, “the essential function of the
MD system might lie in separating, organizing, storing and
controlling the parts of complex, intelligent mental activity.”
Dosenbach et al. (2007) proposes that separable networks
(whose regions overlap with MD regions) serve 2 dissociable
functions: 1) the stable maintenance of task sets and 2) adap-
tive online control. The present results are consistent with both
accounts insofar as the flexible and heterogeneous regions we
identified overlap with those discussed in these prior accounts,
and that cognitive control tasks tend to recruit these regions.
However, with the present approach, we can only speculate as
to the specific functions subserved by the components.

The estimated functionally flexible regions overlap with
regions reported to be frequently activated in the neuroima-
ging literature (Poldrack 2011; Behrens et al. 2013). Given
the overlap between the functional flexibility estimate and the
MD system from individual subjects (Fedorenko et al. 2013),
the non-uniform spatial distribution of foci in the literature
might not reflect a biased selection of tasks. Instead, the non-
uniform spatial distribution may reflect that functionally flex-
ible regions are activated across a wide range of cognitive
domains, possibly due to their integrative roles.

Related Neuroimaging Meta-Analyses
The present work builds on prior meta-analyses that have in-
vestigated functional specialization (e.g., Rottschy et al. 2012;
Clos et al. 2013) and flexibility (e.g., Binder et al. 2009; Shack-
man et al. 2011; Niendam et al. 2012) in the human brain. One
novel aspect of the present work—derived from the use of a
data-driven mathematical formalization of the relationship
between tasks, cognitive components, and brain regions—is
that a broad task- and brain-space could be simultaneously ex-
amined. Typically, analyses are limited to specific brain
regions (e.g., anterior mid-cingulate cortex or DLPFC) or par-
ticular cognitive domains (e.g., semantic memory). Here, the
entire human cerebral cortex was considered across all task
categories in the BrainMap database.

Specifically, prior meta-analyses a priori categorize tasks into
cognitive domains by appealing to specific cognitive theories
(e.g., Kang et al. 2011; Salimi-Khorshidi et al. 2011; Yue et al.
2012). The present approach allows automatic estimation of cog-
nitive components without prior membership constraints. While
some meta-analyses utilize clustering approaches that do not
require a priori categorization of tasks, they typically assume
that the tasks belong to distinct non-overlapping categories
(Laird et al. 2011) or that each brain region belongs to a single
“cluster” (Cieslik et al. 2013; Clos et al. 2013). Here, we sought to
formally model the classic notion that a particular task recruits
multiple cognitive components supported by multiple brain
regions (Walton and Paul 1901; Posner et al. 1988).

Model Considerations
The many-to-many mapping between tasks, cognitive compo-
nents, and brain regions may partly reflect differences across

experiments within a task category, involving dimensions such
as stimulus modality (e.g., visual vs. auditory) and task diffi-
culty (e.g., “3-back” > “2-back” vs. “1-back” > “0-back”). Future
analyses incorporating additional, objectively defined Brain-
Map meta-data (e.g., “stimulus modality”) may resolve these
variations and further refine estimates.

The sharing of cognitive components across tasks in the
hierarchical Bayesian model can improve the estimation of
components recruited by tasks poorly represented in the data-
base or literature. Components of poorly represented tasks can
still be accurately estimated if the components are also re-
cruited by more popular tasks or if many poorly represented
tasks recruit the same component. This is a well-known com-
putational advantage of this kind of model (Blei et al. 2003).

It is important to emphasize that in this work, the terms
“flexibility” and “specificity” refer to the operational definitions
used in the model and are agnostic to the cognitive functional
description of a particular component or region. For example,
a flexible region associated with cognitive control, language
and visual processing might be alternatively described as
supporting a specific abstract function (e.g., “modality-
dependent control”), or as flexibly performing different func-
tions in different contexts. As such, functional flexibility may
indicate higher-level functions that are either more abstract or
coordinative in nature. Furthermore, there is likely a hierarch-
ical nesting of cognitive descriptions, similar to what was ob-
served in the nesting of estimated components.

In addition, it is important to interpret the specialization and
flexibility maps with respect to the estimated components,
rather than treating the maps as absolutes. For example, it
would have been impossible to find regions specialized for dis-
tinct cognitive control components using the 11-component es-
timate because the two cognitive control components in the
12-component estimate are merged in the 11-component esti-
mate. As another example (Supplementary Fig. 9), functional
specificity estimates are similar across the 12-component and
13-component estimates; the Pearson’s correlation between
the two maps is 0.76. Differences in functional specificity esti-
mates between 12-component and 13-component estimates
arise mostly in the visual cortex. This is because of the division
of the visual component into dorsal and ventral visual streams
as the number of components increases from 12 to 13. Note
that the nested ontology holds from 6 to 16 components (Sup-
plementary Fig. 4). From 6 to 16 components, finer-grained
fractionations could yield a diversity of specialized and flexible
components, while retaining properties of conserved compo-
nents of coarser estimates.

The nested property of the estimates suggests that the com-
ponents are meaningful but also that different levels of confi-
dence surround the different properties of the components. As
described earlier, the specific topography of flexibility and
specificity foci is expected to vary across estimates. However,
the following general principles are expected to apply across
estimates: 1) functionally specific regions are more tightly
coupled and 2) flexible regions are heterogeneous and con-
nected to specific regions.

A Resource for Further Inquiry
The attribution of functional specialization may be considered
at different spatial scales (Henson 2005; Gilbert et al. 2010).
For example, at the macro-scale, the occipital cortex can be

16 Specialization and Flexibility in Association Cortex • Yeo et al.

 at N
ational U

niversity of Singapore on January 22, 2015
http://cercor.oxfordjournals.org/

D
ow

nloaded from
 

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu217/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu217/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu217/-/DC1
http://cercor.oxfordjournals.org/


described as being specialized for visual processing. At a finer
scale, different occipital areas may be distinguished based on
their sensitivity to different visual features. At an even finer scale,
different visual subregions within areas may be dissociated
based on their visual field response (e.g., central vs. peripheral)
or sensitivity to visual parameters (e.g., blobs vs. interblobs).

Our work characterized functional specialization at a macro-
scale. As such, the nested ontology of cognitive components
revealed here suggests that future, more refined fractionation
of cognitive components could yield finer-grained insights
into the organization of brain function. We anticipate that such
advances will be realized as additional studies on normal
and abnormal brain function are accrued in the BrainMap data-
base. To this end, we provide estimates of cognitive components
(https://surfer.nmr.mgh.harvard.edu/fswiki/BrainmapOntology_
Yeo2015, last accessed September 12, 2014) that we hope will
serve as starting points for future efforts at functional character-
ization or cross-validation through complementary approaches.
For instance, it would be interesting to determine how flexible
and specific regions relate to graph theoretic concepts, such as
connector hubs (Guimera and Amaral 2005; Bullmore and
Sporns 2009).
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